
Program

i

s

m

B usiness

O bject

R eference

O ntology

p

l

i

f

y

i

n

g

s

e

m

a

n

t

i

c

s

Working
Paper

BG1

BUSINESSONTOLOGY:
GRAPHICALNOTATION-1

CONSTRUCTING SIGNS FOR
BUSINESS OBJECTS

Issue: Version - 4.01 - 01-July-2001

Copyright Notice © Copyright The BORO Program, 1996-2001.

Notice of Rights All rights reserved. You may view, print or download this document for evaluation

purposes only, provided you also retain all copyright and other proprietary

notices. You may not, however, distribute, modify, transmit, reuse, report, or use

the contents of this Site for public or commercial purposes without the owner’s

written permission.

Note that any product, process or technology described in the contents is not

licensed under this copyright.

For information on getting permission for other uses, please get in touch with

contact@BOROProgram.org.

Notice of liability We believe that we are providing you with quality information, but we make no

claims, promises or guarantees about the accuracy, completeness, or adequacy

of the information contained in this document. Or, more formally:

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

OR NON-INFRINGEMENT.

Contact For queries regarding this document, or the BORO Program in general, please use

the following email address:

contact@BOROProgram.org

BG1-iii

BORO

C O N T E N T S

1 Introduction - BG1-1

1.1 Main types of business object - BG1-2

1.2 Why use a two-dimensional notation for a multi-dimensional model? - - - - - - BG1-2

2 Constructing signs for individual objects - BG1-4

2.1 Constructing a sign for an individual body -BG1-4

2.2 Constructing a sign for an individual event -BG1-5

2.3 Constructing individual object name sign components - - - - - - - - - - - - - - - - -BG1-6

3 Constructing signs for classes of objects -BG1-6

3.1 Constructing a sign for a class of individual objects - - - - - - - - - - - - - - - - - - - BG1-7

3.2 Constructing a sign for a class–member tuple -BG1-9

3.3 Constructing a sign for a super–sub-class tuple - BG1-18

4 Constructing signs for tuples- BG1-30

4.1 Constructing a tuple of individual objects and a tuples class - - - - - - - - - - BG1-30

4.2 Tuples classes inheriting patterns from classes -BG1-33

5 Constructing signs for whole–part tuples - - - - - - - - - - - - - - - - - - -BG1-35

5.1 What are whole–part tuples? -BG1-35

5.2 Individuals whole–part tuple hierarchy - BG1-37

5.3 Classes whole–part tuple hierarchy- BG1-38

5.4 Child– and descendant–parts - BG1-38

5.5 Deducing descendant–part signs - BG1-39

6 Constructing signs for dynamic objects - BG1-40

B G 1
B U S I N E S S O N T O L O G Y :

G R A P H I C A L N O T A T I O N - 1

CONSTRUCTING SIGNS FOR BUSINESS

OBJECTS

BG1-iv

EBORO

CONTENTS
BG1

6.1 Constructing a sign for the ‘here’ event class - BG1-40

6.2 Constructing a sign for the ‘now’ event class - BG1-41

6.3 Constructing a sign for a current tuple - BG1-41

7 Signs as objects—modelling the model- -BG1-42

7.1 A (modelling)2 model -BG1-43

8 What’s next -BG1-44

BORO Working Papers - Bibliography - BG1-45

INDEX - BG1-47

BG1-1

BORO

1 Introduction

The BORO paper OP4—Business Object Ontology Paradigm helps us to develop an

understanding of what business objects are. However, that is only a precursor,

albeit an important one, to the real business of modelling. The accuracy and flexi-

bility of the object ontology give us a powerful way of seeing the business. We har-

ness this power by building models that describe what we see.

In the BG—Business Ontology: Graphical Notation we focus on object syntax; in

other words, on how we ‘write’ the signs for objects and their patterns. We learn a

notation for describing business objects in models. In this paper we look at the

individual signs for the main types of business object. These are the signs with

which we build the business object model. We focus on what they mean and how

they work. Then, in the next paper (BG2— Constructing Signs for Business Objects’

Patterns), we look at signs for business objects’ patterns.

The BG—Business Ontology: Graphical Notation help us to develop an understand-

ing of object syntax and the notation for business object models. They also

deepen and broaden our understanding of object semantics. Using a notation for

describing objects naturally leads to a better understanding of them. For exam-

B G 1
B U S I N E S S O N T O L O G Y :

G R A P H I C A L N O T A T I O N - 1

CONSTRUCTING SIGNS FOR
BUSINESS OBJECTS

BG1-2

1 Introduction

Constructing Signs for Business Objects

BORO

ple, because the notation explicitly signs the key structural patterns (super–

sub-class, class–member and whole–part) these are clearly visible and so easier

to understand. And because the notation gives each pattern a different sign, it

helps us see that they are different.

Learning this notation is essential for understanding the MW—The BORO Method-

ology: Worked Examples Papers, which work their way though examples of re-engi-

neering existing computer systems into business objects. As well as providing

useful illustrations of both object semantics and object syntax, these examples

will provide us with further experience of how the notation is used.

1.1 Main types of business object

In this paper we look at the object notation’s basic signs for the following main

types of object:

• Individual objects,

• Class Objects,

• Tuple objects (and, more specifically, whole–part tuple objects), and

• Dynamic objects.

We see how the signs are constructed, what they mean and how they are used.

1.2 Why use a two-dimensional notation for a multi-dimensional model?

Before we look at the notation, I should explain why it is two-dimensional. I have

asserted a number of times in The BORO Working Papers that objects free us from

the two-dimensional constraints imposed by paper and ink technology. I have sug-

gested that this enables us to take advantage of computer technology’s ability

to handle multi-dimensional structures. However, the notation we are about to

look at is on paper and so only two-dimensional. Why is this so and why doesn’t it

constrain the overall business model to two dimensions? To understand the

answers to these questions, we need to look closely at the ‘technology’ that we

use when business modelling.

BG1-3

BORO
1.2 Why use a two-dimensional notation for a multi-dimensional model?

Constructing Signs for Business Objects

Modelling the business is currently done by humans. It is human brains, and not

computers, that construct and revise the business model. This means that the

human mind needs to ‘interface’ with the business model. The object notation has

to be easily read by humans.

Human biotechnology and computer technology both constrain how we can ‘proc-

ess’ a business model. (Processing currently means ‘see’—we do not touch or

hear business models, let alone taste or smell them.) Computer technology con-

strains our visual ‘interface’ to two dimensions. The ‘inputs’ we receive from a

computer system, whether on a screen or a print-out, are two-dimensional. The

biotechnology of human eyes’ retinas is also constrained to two-dimensional

images. Furthermore, human brains are trained to process the kind of information

in business models on two-dimensional surfaces.

From a practical point of view, this means that the sensible solution is to con-

struct and review the multi-dimensional business model through two-dimen-

sional views. Digestible two-dimensional chunks are an easy and effective way for

the human brain to absorb the model. And its multi-dimensionality is not

affected.

This solution can give computer technology an important role. Business models

are static—in both traditional and object modelling; they map the time dimen-

sion onto the spatial dimensions. This means that the business model is not

itself an information processing system; it is only stored information—data.

However, producing a two-dimensional view of a multi-dimensional business model

does take processing. So, at least in theory, we need the power of a computer to

store the multi-dimensional model and produce the two-dimensional views.

In practice, using a computer with good CASE tool software can make the admin-

istration of storing the model and the processing of views easier, but it is not

essential. I have found that constructing a multi-dimensional business model

from two-dimensional paper views (in other words, using paper and ink technol-

ogy) is a practical option—particularly when working with small models. The vital

decisions about the construction and review of the business model happen in the

BG1-4

2 Constructing signs for individual objects

Constructing Signs for Business Objects

BORO

brain of the business modeller, which is not excessively hampered by a paper

model.

This is just as well because CASE tool software is not yet fully geared up for busi-

ness object modelling. At a more mundane level, I have found a computer graphics

package an invaluable aid to producing the paper views; the results are much more

legible than hand-drawn ones. While computers are not essential at the business

modelling stage, it is a different story when the model is turned into a working

system. Then, computer technology becomes essential.

2 Constructing signs for individual objects

Let’s now look at the two-dimensional notation. In object semantics, an individual

object is a plain and simple extension. This is referred to (directly mapped onto)

by a sign in the model. We use different signs for the different types of individual

objects:

• Individual body, and

• Individual event.

2.1 Constructing a sign for an individual body

The sign for an individual body is constructed out of two components. A body sign,

which is a rectangle, and a name sign that is the name of the body. We put the

name sign inside the body sign (shown in Figure BG1–1). This figure also diagrams

the extra-model reference link between the individual body sign in the model and

the body object in the domain.

BG1-5

BORO
2.2 Constructing a sign for an individual event

Constructing Signs for Business Objects

Figure BG1–1
Individual body
sign

Sometimes, to aid recognition, we include an icon of the individual body inside the

body sign (shown in Figure BG1–2).

Figure BG1–2
Alternative
individual body
sign

2.2 Constructing a sign for an individual event

We construct the sign for an individual event in a similar way out of two compo-

nents. An event sign, which is an ellipse, and a name sign, which is the name of the

event. We again put the name sign inside the event sign (shown in Figure BG1–3).

r
e
fe

r
s
 t

o

MY CARMY CAR

Individual Body
Name Sign

Composite
Individual
Body Sign

Body
Component Sign

+ =

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

C
O

M
P

O
N

E
N

T
S
IG

N
S

D
O

M
A

IN

r
e
fe

r
s
 t

o

Individual
Body Name
Component

Composite
Individual
Body Sign

Component
Body Sign

Individual
Body Icon

Component

MY CAR

MY CAR

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

C
O

M
P

O
N

E
N

T
 S

IG
N

S

BG1-6

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Figure BG1–3
Individual event
sign

2.3 Constructing individual object name sign components

The shape of the component body and event signs show their type; so, all signs of

the same shape are the same type. We use everyday language for the name com-

ponents. These differentiate between signs for different objects. They help us

recognise which object a particular composite sign refers to. To avoid confusion, a

convention, within each model, indicates that the name signs are unique; no two

individual objects have the same name sign.

3 Constructing signs for classes of objects

We now look at how to construct the signs that refer to classes. We also look at

the signs for the class pattern’s two important tuples connecting classes:

• Class–member, and

• Super–sub-class.

Individual Event
Name Sign

Composite
Individual
Event Sign

Event
Component Sign

r
e
fe

r
s
 t

o

ACCIDENT ON
25/5/95

ACCIDENT ON
25/5/95+

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

C
O

M
P

O
N

E
N

T
S
IG

N
S

BG1-7

BORO
3.1 Constructing a sign for a class of individual objects

Constructing Signs for Business Objects

3.1 Constructing a sign for a class of individual objects

We first look at how to construct a sign for a class of individual objects. Just as

there are different signs for an individual body and an individual event, there are

different signs for a class of individual bodies and a class of individual events.

3.1.1 Constructing a sign for a class of individual events

Remember that we construct a class of individual objects by collecting together

the extensions of those objects and treating the collection as a single object.

This single object is what the class sign refers to.

 A class of individual events only contains events, so we use the same elliptical

event sign as a component. We put the name of the class in this ellipse. We then

indicate that we have constructed the event class out of individual events by

putting two smaller superimposed ellipses—signs for the member events—in

the bottom right corner. Figure BG1–4 gives an example. In this example, we have

also put the name sign for a member of the class, ‘accidents’, in the smaller

ellipse. Often, however, a member name sign takes up too much space and we have

to leave it out.

BG1-8

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Figure BG1–4
A class of
individual
events sign

3.1.2 Constructing a sign for a class of individual bodies

The sign for a class of individual bodies follows the same pattern. We use the

same rectangular box sign that we used for individual body signs and show the

class has members using two smaller superimposed rectangular boxes in the bot-

tom right corner. Again we name the class and, if there is enough space, the

potential members. The name sign for the class is in the larger class rectangle

and the name sign for a member of the class is in the smaller member rectangles

(shown in Figure BG1–5).

IN
F
O

R
M

A
T

IO
N

 M
O

D
E
L

D
O

M
A

IN

ACCIDENTS

ACCIDENT ACCIDENT

ACCIDENT

Composite
Class Of

Individual
Events Sign

Member
Name Sign

Composite Event
Members Sign

Event Members
Component Sign

Event Class
Name Sign

Event
Component Sign

+

+ +

=

C
O

M
P

O
N

E
N

T
 S

IG
N

S

ACCIDENTS

ACCIDENTS

ACCIDENT

r
e
fe

r
s
 t

o

BG1-9

BORO
3.2 Constructing a sign for a class–member tuple

Constructing Signs for Business Objects

Figure BG1–5
A class of
individual bodies
sign

3.1.3 Constructing class name and member name sign components

We use class names, as we used individual object names, to differentiate the

signs (and so identify the classes). As before, we keep the names unique within

each model. Unlike some notations, we use different names for a class and its

members. These other notations, will, for example, call both the cars class and its

individual members ‘car’. I have found that this causes confusion. In object seman-

tics, a clear distinction is made between the class and its members. In object

syntax, this is reflected in different names for the class and its members—

often, as here, the plural and singular forms of a noun. Using the car example, the

class is called (and so the class name sign is) ‘cars’ and an individual member is

called a ‘car’.

3.2 Constructing a sign for a class–member tuple

Individual objects (whether bodies or events) that are members of a class belong

to that class; that is, there is a class–member tuple connecting each member

Member
Name Sign

Bodies Class
Name Sign

Composite
Body Members

Sign

Body Members
Component Sign

Composite
Bodies Class

Sign

Component
Body Sign IN

F
O

R
M

A
T

IO
N

 M
O

D
E
L

D
O

M
A

IN

CARS

 CAR

 CAR

 CAR

+ +

+ =

C
O

M
P

O
N

E
N

T
 S

IG
N

S

CARS

 CAR

r
e
fe

r
s
 t

o

BG1-10

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

object and the class. This tuple is central to the notion of a class, so we need to

have a sign for it in our notation.

3.2.1 Classes and members

The class–member tuple is, strictly speaking, a couple <individual object, class>

that belongs to the class–member tuples class. We model it by drawing a class–

member tuple sign. This is a dashed line joining the relevant class and member

signs. It has, at the member end, a semi-circle with a line through it (shown in Fig-

ure BG1–6). This is intended to look like the Greek character epsilon ‘ε’—the

mathematical sign for class membership. We show that the connection is a tuple

by putting a black diamond, the sign for a tuple, on the line.

Figure BG1–6
Class–member
tuple sign

As you can see from the figure, we use the same class–member tuple sign for

body and event classes. This is understandable because the underlying pattern is

the same. There is also an informal convention (followed in Figure BG1–6) that we

draw classes higher up the page than their members; though in some complicated

diagrams, it is not possible to do this.

Members of

more than

one class

Unlike some notations, this can easily model an object that is a member of more

than one class—what we called multiple classification. We just join the object’s

sign to each of the relevant class signs with class–member tuple signs (shown in

Figure BG1–7).

MY CAR

CARS

CAR

BODY EXAMPLE EVENT EXAMPLE

ACCIDENTS

ACCIDENT

ACCIDENT ON
25/5/95

Composite
Class-Member
Tuple Sign Tuple

Component
Sign

Class-Member Tuple
Component Sign

BG1-11

BORO
3.2 Constructing a sign for a class–member tuple

Constructing Signs for Business Objects

Figure BG1–7
Multiple class–
member tuple
signs

An accurate

class–

member sign

pattern

The class–member pattern is a very strong pattern; one that is central to object

semantics. So is its reflection in the information model, the class–member sign

pattern. Because one is a reflection of the other, they have similar patterns.

However, a common mistake is to assume they have the same pattern. This is not

so. The information model’s ‘ignorance’ leads to differences. We look at one of

these now.

It is natural and normal to assume a class has members. A class is a class

because it captures some common patterns of its members; so, it is reasonable

to assume it has members. Because a class sign’s purpose is to model a class, it

also appears reasonable to assume that it will reflect this characteristic—to

think that a class sign is always linked to some member signs (sometimes called

instances).

But this is wrong—it turns out that it is natural and normal in an information

system for a class sign to have no member signs. In fact, it is quite common. For

example, we talk about types of wild animals without having any notion of a par-

ticular animal. We talk about elephants (the class elephants) or gorillas (the

class gorillas) without ever knowing a particular elephant or gorilla (members of

MY CAR

MY THINGS

MY
THING

Multiple Class-Member
Tuples CARS

CAR

r
e
fe

r
s
 t

o

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

MY
THINGS

r
e
fe

r
s
 t

o

CARS

r
e
fe

r
s
 t

o

BG1-12

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

the classes elephants and gorillas). Our minds, as information systems, have no

member signs for the class signs we are using.

Member sign-less (instanceless) class signs are an almost universal rule in the

shipped versions of business computer system packages. For example, account-

ing packages are usually shipped with a transactions file (a class sign) that has

no individual transactions (in object terms, member signs)—the situation shown

in Figure BG1–8.

Figure BG1–8
The
instanceless
transactions
class sign

3.2.2 Modelling lack of membership information

No information system is completely ‘informed’. This includes human minds, which

are considered information systems. We now illustrate this with two types of

ignorance that arise when modelling the class–member pattern:

• Unknown members, and

• Unknown membership.

Modelling

unknown

members

For every class in an information system, when we look at it objectively from out-

side the system, we can divide its members into known and unknown. Known if the

information system has a sign for them; otherwise, unknown (or, more accurately,

I
N

F
O

R
M

-

A
T

I
O

N

M
O

D
E
L

D
O

M
A

I
N

TRANSACTIONS

r
e
f
e
r
s
 t

o

TRANSACTIONS

TRANSACTION

BG1-13

BORO
3.2 Constructing a sign for a class–member tuple

Constructing Signs for Business Objects

unknown by the information system but known by us—otherwise, we could know

that they were unknown). This distinction has nothing to do with the class or its

members. It is a feature of the information model (shown in Figure BG1–9.)

Figure BG1–9
Known and
unknown class–
members

It is common for a member to be unknown because it has not yet come into exist-

ence. When it does, the information system can then construct a sign for it. This

happens, for instance, when a new country is created. It happened recently for

the Czech Republic and Slovakia; ten years before they were created, no-one

would have known about these two countries. But when Czechoslovakia decided

to separate into two countries, people began to become aware of them. The

extension of the class countries in the real world did not change. All that changed

was the construction of new signs for the Czech Republic and Slovakia in informa-

tion systems.

Modelling

unknown

class

membership

It is important to remember that, not only do signs have to be constructed in the

system for the class’s members, but also for the class–member tuples connect-

ing members to the class. Our minds automatically and unconsciously supply this

link; so, it is easy to forget that it needs to be explicitly constructed. We can illus-

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

KNOWN

UNKNOWN

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

? ?JOHN'S CARMY CAR

CARS

r
e
fe

r
s
 t

o

CARS

 CAR

BG1-14

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

trate this with an example where the system starts off knowing about the mem-

ber of a class but not its membership of the class.

Consider an Agatha Christie type of detective novel, in which a murder has been

committed in a country house. At the beginning of the novel, we are introduced to

each of the characters; the butler, the lord of the manor, the chambermaid, and

so on. We know that, by convention, one of these is the murderer. Assume that

Jeeves the butler is the murderer—in other words, a member of the class of mur-

derers. Now, when we start reading the book we know Jeeves and know the class

murderers, but have not (yet) found out that Jeeves is a member of the class

murderers. Figure BG1–10 shows the state of our knowledge.

Figure BG1–10
Jeeves the
butler as an
unknown
member of the
class murderers

At some stage, as the plot unfolds, we realise the butler is the murderer. As we

already have signs for the butler and the class murderers, all we need to do is con-

struct the class–member tuple sign between the two. The result is shown in Fig-

ure BG1–11. Notice that there is no change in the domain. The butler belonged to

the class murderers all along, what happens when we solve the mystery is that we

learn of his membership.

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

JACK THE
RIPPER

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

JEEVES

MURDERERS

r
e
fe

r
s
 t

o
MURDERERS

MURDERER

BUTLERS

r
e
fe

r
s
 t

o

BUTLERS

BUTLER

BG1-15

BORO
3.2 Constructing a sign for a class–member tuple

Constructing Signs for Business Objects

Figure BG1–11
Jeeves the
butler as a
known member
of the class
murderers

The

constructive

nature of

modelling

This and the previous example of ‘ignorance’ have highlighted what might be called

the constructive nature of signs and so information. Signs only exist if we con-

struct them. This is obvious when we start to think about it. How could a sign

exist that has not been constructed? We shall see, as we work through this

paper, the fundamental impact this constructive nature has on information mod-

elling.

3.2.3 Classes as members of classes

So far we have only considered classes of individual objects. However, we recog-

nised in the logical paradigm that classes were objects and so could, like individual

objects, be collected together into classes—giving us classes of classes

objects. This means that the class–member tuple, with its <class, member> for-

mat, can have any type of object (individual, class or tuple) in its member place.

We now look at how we sign the class-member pattern for classes of classes, and,

in the process, see how we capture class–member hierarchy patterns in the

model.

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

JACK THE
RIPPER

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

JEEVES

MURDERERS

r
e
fe

r
s
 t

o

MURDERERS

MURDERER

BUTLERS

r
e
fe

r
s
 t

o

BUTLERS

BUTLER

BG1-16

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Class–

member

hierarchy

The sign for describing a class as a member of a class is exactly the same as that

for describing an individual object as a member of a class. The example shown in

Figure BG1–12 is taken from our original example of classes of classes in OP3—Log-

ical Ontology Paradigm (illustrated by OP3’s Figure OP3–27 and Figure OP3–28). As

we can see, the class–member sign is used in the same way for members that are

classes as for members that are individual objects. Figure BG1–12 is also an exam-

ple of how we model a simple class–member hierarchy.

Figure BG1–12
Car types—an
example of a
class–member
hierarchy

Class

membership

inheritance

We shall see later on that various patterns are inherited down (and sometimes

up) the different hierarchies. However class membership is not one of these. It is

inherited neither up nor down the class–member hierarchy. Consider my car in Fig-

ure BG1–12. It is a member of the class minis, which is itself a member of the class

car types. But this does not imply that my car is automatically a member of the

class car types. In fact, as shown, it is not a member.

This should not be surprising. Classes capture patterns by collecting together

similar objects. It is unlikely that a collection of similar classes, such as car

types, would share their car type pattern with their members. For example, that

my car (a member of minis) would behave like a car type.

Ban on

circularity

Because we construct classes from extensions, we cannot construct a class

with itself as a member. Furthermore, we cannot construct a class that is a

CAR TYPES

CAR TYPE

MINIS

MINI

MY CAR

CLASS OF
CLASSES
OBJECT

CLASS
OBJECT

INDIVIDUAL
OBJECT

CLASS-
MEMBER

HIERARCHY

Invalid
Class-Member
Inheritance{

BG1-17

BORO
3.2 Constructing a sign for a class–member tuple

Constructing Signs for Business Objects

member of a class lower down the class–member hierarchy. The impossible situa-

tion is shown in Figure BG1–13. We recognise this impossibility in the information

model. We do not allow class signs to be instances of class signs lower down the

class–member sign hierarchy.

Figure BG1–13
Impossible
circular class–
member
hierarchy

It is the nature of our understanding of space (and time and space-time) that

makes this circularity impossible. This can be shown using the reference diagram

in Figure BG1–14.

Figure BG1–14
Impossible
circular class–
member
hierarchy
reference
diagram

CAR TYPES

CAR TYPE

MINIS

MINI

I
N

F
O

R
M

A
T

I
O

N

M
O

D
E
L

D
O

M
A

I
N

MINIS

CAR TYPES

CAR TYPES

CAR TYPE

MINIS

MINI

CAR TYPES

MINIS

r
e
f
e
r
s
 t

o

r
e
f
e
r
s
 t

o

BG1-18

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

3.3 Constructing a sign for a super–sub-class tuple

We have just looked at the signs for capturing the class–member patterns. How-

ever, this is only one of class’s two main structural patterns. The super–sub-

class connection is the other. We now look at the signs for this second main

structural pattern. Together these two provide a framework that helps give

classes their enormous power.

3.3.1 The super–sub-class pattern

The super–sub-class pattern resembles a whole–part pattern for classes. It is

about classes containing other classes. For example, horses are animals—or, in

class-speak, the class horses is a sub-class of (is contained in) the class animals.

This containment or sub-class connection is between the super-class and the

sub-class. Strictly speaking, it is the couple <super-class, sub-class> that

belongs to the super–sub-class tuples class.

Super–sub-

class sign

We model this super–sub-class pattern with a sign. It consists of a line joining

the two relevant class signs with a semi-circle at the sub-class end. This is

intended to look like the mathematical notation for sub-class—‘É’. Because it

reflects a tuple, it also has a black diamond tuple sign on the line. As we can see

from Figure BG1–15, the same sign is used for body and event classes. There is no

need for different signs because the connections have the same pattern.

Figure BG1–15
Super–sub-
class tuple sign

ANIMALS

ANIMAL

HORSES

HORSE

SERIOUS
ACCIDENTS

SERIOUS
ACCIDENT

Composite
Super-Sub-Class Tuple
Sign

Tuple
Component

Sign

Super-Sub-Class
Tuple Component Sign

BODY EXAMPLE EVENT EXAMPLE

ACCIDENTS

ACCIDENT

BG1-19

BORO
3.3 Constructing a sign for a super–sub-class tuple

Constructing Signs for Business Objects

3.3.2 Super–sub-class hierarchies

Typically, in a business model, classes are linked into a lattice hierarchy of super-

and sub-classes. As we saw, when looking at the logical paradigm in OP3—Logical

Ontology Paradigm (see OP3’s Figure OP3–23), a tree hierarchy is too constraining

to provide an undistorted reflection of reality.

Natural

super–sub-

class

hierarchy

structure

In this lattice hierarchy, a super-class may have multiple sub-classes and a sub-

class may have multiple super-classes. For instance, the schema in Figure BG1–16

models the super-class animals as having the sub-classes, mammals and male

animals. It models the class stallions as having the classes horses and male ani-

mals as its super-classes.

When I construct a model of a super–sub-class hierarchy like this, I tend to auto-

matically order the classes into a structure like the one in Figure BG1–16. As you

can see, this follows an informal convention whereby super-classes are higher up

the page than their sub-classes (though I find that in some complicated hierar-

chies it is not possible to do this).

Figure BG1–16
Natural super–
sub-class
hierarchy
structure

MALE

ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

BG1-20

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Modelling

descendant

–sub-

classes

The natural structure in Figure 9.16 subtly ignores the fact that the super–sub-

class tuple can be inherited. The class stallions is a sub-class of the class horses

and so contained in it. The class horses is a sub-class of the class mammals,

which is a sub-class of the class animals. So, the class stallions is contained in

the class animals. This means that we can, if we wish, recognise it as a sub-class

and construct a sub-class sign in the model linking them.

Though we may need to do this for some classes, it is not a good idea to do it for

all of them in a single schema. Why is this? Consider what the model for our simple

example would look like if we included signs for all the possible sub-class tuples.

Figure BG1–17 illustrates the problem—the hierarchy becomes cluttered. If the

super–sub-class hierarchy were larger, the problem would be worse because the

number of potential sub-class tuples would increase dramatically. Modelling all

these possible sub-class tuples would result in an impossibly cluttered schema.

Figure BG1–17
All possible sub-
class tuples

Figure BG1–17 also, quite usefully, distinguishes between two types of sub-class

tuples; child and descendant. The stallions-to-horses tuple is a child–sub-class

tuple because there are no intermediate sub-classes explicitly modelled. On the

other hand, the stallions-to-animals tuple is a descendant–sub-class tuple

because the sub-classes, mammals and horses, are explicitly modelled as inter-

mediate sub-classes. The sub-class sign we have been using until now is really the

MALE
ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

Child-Sub-Class
Tuple

Descendant-
Sub-Class

Tuples

Composite
Descendant-Sub-
Class Tuple Sign

Descendant-
Sub-Class Tuple

Component
Sign

BG1-21

BORO
3.3 Constructing a sign for a super–sub-class tuple

Constructing Signs for Business Objects

sign for the child–sub-class tuple. The descendant–sub-class tuple sign is a mod-

ified version of it, with an additional zigzag in its line (as shown in Figure BG1–17).

Deducing

descendant

–sub-class

signs

Descendant–sub-class tuples logically depend on child–sub-class tuples,

because we can ‘logically’ construct their signs from the signs for the child–sub-

class tuples. More generally, we can logically deduce the sign for a descendant–

sub-class tuple from a combination of sub-class tuples. This deduction has the

following pattern:

A is a sub-class of B

B is a sub-class of C

C is a sub-class of D

D is a sub-class of E

Therefore:A is a descendant–sub-class of E

Where there can be any number of sub-class lines (except zero and one of course).

This is not a new logical deduction pattern. It is the same as one of Aristotle’s

syllogisms—one that looks like this:

All Spartans are humans,

All humans are animals,

So all Spartans are animals.

It might be easier to see the resemblance when the syllogism is translated into

class-speak—as below:

The class Spartans is a sub-class of the class humans,

The class humans is a sub-class of the class animals,

So the class Spartans is a descendant–sub-class of the class animals.

Figure BG1–18 shows this descendant calculation graphically.

BG1-22

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Figure BG1–18
Descendant–
sub-class
calculations

Virtual

descendant

–sub-class

signs

This descendant deduction pattern provides an opportunity to tidy up the sub-

class clutter problem. The descendant signs can be virtual, calculated as

required. As we discussed in AS4—Focusing on the Things in the Business, there is

no reason why processes in the information system cannot represent business

objects. This gives us the benefit of having signs for all the descendant–sub-class

tuples without having to bear the cost of storing them—a significant compact-

ing.

The power of computing makes this ‘virtual’ strategy more reliable. In a paper and

ink environment, the information processor that deduces the descendant tuple

signs is our minds. They are not particularly reliable processors, particularly of

these sorts of logical calculations. However, in computer processing, we have a

reliable logical processor. It can accurately and consistently calculate the signs.

I normally adopt a strategy of making most descendant–sub-class signs virtual. I

construct views of the business model that only show the signs for child–sub-

class tuples and those descendant–sub-class tuples that are essential. I make

the signs for the other descendant–sub-class tuples virtual. This reduces the

ANIMALS

ANIMAL

ANIMALS

ANIMAL

HUMANS

HUMAN

HUMANS

HUMAN

SPARTANS

SPARTAN

SPARTANS

SPARTAN

BEFORE AFTER

Calculated
Descendant-
Sub-Class
Tuple

BG1-23

BORO
3.3 Constructing a sign for a super–sub-class tuple

Constructing Signs for Business Objects

clutter in even the most complicated super–sub-class hierarchy to an easily man-

ageable level.

Non-circular

super–sub-

class

hierarchy

structure

There is a logical constraint upon the super–sub-class hierarchy. Like the earlier

class–member hierarchy, it cannot be circular. For example, animals from Figure

BG1–18 cannot be a sub-class of Spartans, as (falsely) indicated in Figure BG1–19.

Because classes are built up out of extensions, it is impossible for any circularity

to exist. A class, such as animals, cannot even potentially, be a sub-class of

itself—in other words, contained in itself.

Figure BG1–19
Impossible
circular super–
sub-class
hierarchy

Like the class–member hierarchy, it is the nature of our understanding of space

and time (and space-time) that makes this circularity impossible. This is shown

by the reference diagram in Figure BG1–20. Normally, we illustrate the super–sub-

class structure by having one class contained in another. However, as the figure

shows, this will not work for a circular structure; instead, we show the sub-class

connection using an arrow.

SPARTANS

SPARTAN

ANIMALS

ANIMAL

HUMANS

HUMAN

BG1-24

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Figure BG1–20
Impossible
circular super–
sub-class
reference
diagram

Inheriting

class

membership

As we would expect, the patterns for classes are webby; in other words, the pat-

terns for super–sub-class and class–member intertwine. One pattern is particu-

larly important; it is the inheritance of class membership up the super–sub-class

hierarchy.

To see how this works, we introduce Trigger the horse into the model in Figure

BG1–21. We naturally tend to make him a member of the class stallions (shown in

Figure BG1–21). Stallions is the hierarchy’s lowest class. However, Trigger is poten-

tially a member of all the hierarchy’s higher classes, but our natural instinct is not

to model these possibilities.

I
N

F
O

R
M

-

A
T

I
O

N

M
O

D
E
L

D
O

M
A

I
N

ANIMALS

r
e
f
e
r
s
 t

o

ANIMALS

ANIMAL

HUMANS

SPARTANS

BG1-25

BORO
3.3 Constructing a sign for a super–sub-class tuple

Constructing Signs for Business Objects

Figure BG1–21
Natural position
for Trigger the
horse

Why don’t we model these potential higher class–member tuples? We had a simi-

lar situation to this earlier with child– and descendant–sub-classes. And the

answer is the same here—they would clutter up the schema and the model. We

can see this in Figure BG1–22, which shows the results of constructing all the

class–member tuples for our example. The model is pretty cluttered and this is

only a small hierarchy. A much larger hierarchy would be impossibly cluttered. We

have a class–member, as well as a sub-class, clutter problem.

TRIGGER

MALE

ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

BG1-26

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Figure BG1–22
All Trigger the
horse’s member
possible class–
member tuples

Figure BG1–22 also illustrates a distinction between the sign for the lowest

class–member tuple—now called the nearest-class–member sign—and the sign

for other class–member tuples—now called distant-class–member signs. The

distant-class–member signs use the same zigzag component sign as the earlier

descendant–sub-class signs. Trigger’s nearest class is stallions because there is

no class below stallions in the super–sub-class hierarchy to which he belongs; so,

the class–member tuple is a nearest-class–member tuple. Trigger is a dis-

tant-class–member of each of the classes horses, mammals, male animals and

animals because there is a class below them in the class–member hierarchy, the

class stallions, of which he is a member.

Deducing

more

distant-

class–

member

signs

As with child–sub-class signs, we can deduce and construct distant-class–mem-

ber signs from the nearest-class–member sign. Like before, this is done logically,

without involving any analysis of what the signs refer to. The converse is, of

course, not true. We cannot work out a nearer class–member sign from a more

distant sign. This makes the nearest-class–member sign key; from it we can cal-

culate all the distant-class–member signs.

Nearest-
Class-Member

Tuple

Distant-
Class-Member
Tuples

TRIGGER

Composite
Distant-
Class-Member
Tuple Sign

Distant-
Class-Member

Tuple
Component

Sign

MALE
ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

BG1-27

BORO
3.3 Constructing a sign for a super–sub-class tuple

Constructing Signs for Business Objects

More generally we can construct a distant-class–member sign from the class–

member sign and a chain of super–sub-class signs up from its class sign. The

deduction has the following pattern;

A is a class–member of B

B is a sub-class of C

C is a sub-class of D

D is a sub-class of E

Therefore:A is a more distant-class–member of E

There can be any number of sub-class lines (except zero of course) in this calcula-

tion.

As with the earlier descendant–sub-class calculation pattern, this has the same

pattern as one Aristotle’s syllogisms (called barbara), which looks like this:

Socrates is a man,

All men are mortal,

So Socrates is mortal.

It is easier to see the resemblance when it is translated into class-speak—as

below:

Socrates is a class–member of the class men,

The class men is a child–sub-class of the class mortals,

So Socrates is a more distant-class–member of the class mortals.

The distant calculation for Aristotle’s syllogism is shown in Figure BG1–23.

BG1-28

3 Constructing signs for classes of objects

Constructing Signs for Business Objects

BORO

Figure BG1–23
Aristotle’s
barbara
syllogism

People who have not yet developed a clear idea of the difference between the

class–member and super–sub-class patterns often see this distant-class–

member calculation process as the same as the earlier descendant–sub-class

calculation process. When they develop a clear understanding of the differences

between the two patterns, they then begin to see the differences between, as

well as the similarities in, the two processes.

Compact

class–

member

hierarchy

models

The distant-class–member deduction pattern works in a similar way to the ear-

lier descendant–sub-class pattern. This provides us with an opportunity to use

virtual signs again and tidy up the class–member clutter problem. An opportunity

to get the benefit of having signs for all the descendant–sub-class tuples, with-

out having to bear the cost of visibly recording them. Once I model the nearest-

class–member tuple, I can assume that all the distant-class–member tuples also

‘virtually’ exist.

I can then adopt the strategy of only modelling the nearest-class–member

tuples and essential distant-class–member tuples. The signs for the many other

distant-class–member tuples are virtual. This can reduce the clutter in even the

most complicated class–member hierarchy to an easily manageable level.

MORTALS

MORTAL

MORTALS

MAN

MEN

MAN

MEN

MAN

Calculated
Distant-
Class-Member
Tuple

SOCRATESSOCRATES

BEFORE AFTER

BG1-29

BORO
3.3 Constructing a sign for a super–sub-class tuple

Constructing Signs for Business Objects

3.3.3 Super–sub-class tuples class

We naturally see the super–sub-class tuple as connecting classes. This is correct

in one sense, the tuple can only connect classes. But, it does not mean the super–

sub-class sign only connects class signs. If a class sign refers to a class of

classes, then its member component refers to the member classes. Because

these are classes they can be connected with their sub-class signs using the

super–sub-class sign. Furthermore, because the member component sign refers

to a class of members, the super–sub-class sign refers to a class of super–sub-

class tuples.

Here is an example. Consider the Linnaean biological scheme used to classify indi-

viduals into species and species into genera (singular—genus). This two-level

structure is reflected in the Linnaean names for species. For instance, our spe-

cies is homo sapiens where homo is the genus and sapiens the species within genus.

This gives us an example of a super–sub-class tuple class between classes’ mem-

bers.

At the classes of classes level we have two classes; genera and species. The class

genera has individual genus classes, such as homo as members. The class species

has individual specie classes, such as homo sapiens as members. At the classes of

individual objects level, we also have two classes; homo and homo sapiens. The

class homo sapiens is a sub-class of the class homo as shown in Figure BG1–24. This

particular super–sub-class pattern is just a particular example of a more general

pattern. The members of the class species are sub-classes of the members of

the class genera. This is a super–sub-class tuples class between the classes’

members. Because it refers to all the different individual tuples between the vari-

ous members, it is a class of tuples not an individual tuple. This is reflected in its

sign, which uses a tuples icon instead of a tuple icon (shown in Figure BG1–24).

BG1-30

4 Constructing signs for tuples

Constructing Signs for Business Objects

BORO

Figure BG1–24
The super–sub-
class tuples
class sign

4 Constructing signs for tuples

We have finished looking at the notation for classes, an object with internal

structure resulting from its construction from other objects. We now look at

another constructed object with internal structure, the tuple object.

4.1 Constructing a tuple of individual objects and a tuples class

For our purposes, tuples exist with an associated tuples class. So we model the

sentence ‘Prince Charles is the father of Prince William’ with a tuple and a tuples

class (shown in Figure BG1–25).

HOMO

HOMO
SAPIENS

SPECIES

SPECIE

GENERA

GENUS

Composite
Super-Sub-Class
Tuples Sign

Tuples
Class

Component
Sign

Super-Sub-Class Tuple
Component Sign

BG1-31

BORO
4.1 Constructing a tuple of individual objects and a tuples class

Constructing Signs for Business Objects

Figure BG1–25
Tuple and tuple
class signs

Note these points:

• The solid black diamond is the component sign for the tuple.

• The connecting lines from the tuple component sign to other signs are
called tuple place component signs.

• The tuple place component signs connect the sign for the tuple with the
signs for the objects out of which it is constructed. These are called the
tuple place objects. In the Prince Charles—Prince William tuple, the
places are occupied by individual objects, but they could be occupied by
any type of object.

• The component sign for a tuples class is two hollow diamonds, one inside
the other.

• The lines from the component tuples class sign are called the (tuples)
class place component signs.

• The father–child tuples class is a class object and so uses the standard
class–member sign to link to its member tuple sign.

4.1.1 Occupied class place signs

A (tuples) class place is said to be occupied when its tuples class sign is con-

nected to another object. For instance, the fathers class is connected to the

father–child tuples class in Figure BG1–26. This occupation is signed by adding the

component tuple sign, a solid black diamond, to the (tuples) class place compo-

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

PRINCE
CHARLES

PRINCE
WILLIAM

PRINCE
CHARLES

PRINCE
WILLIAM

Composite
Tuples
Class
Sign

FATHER-CHILD
TUPLES

Composite
Tuple
Sign

Component
Tuple Place

Signs

is the father of f o dli hc eht si

PRINCE CHARLES-
PRINCE WILLIAM TUPLE

r
e
fe

r
s
 t

o

FATHER-CHILD
TUPLES

r
e
fe

r
s
 t

o

BG1-32

4 Constructing signs for tuples

Constructing Signs for Business Objects

BORO

nent sign. The object to which the tuples class is connected is called a (tuples)

class place object, an example is the fathers class in Figure BG1–26. Notice that

the ‘is a child of’ class place sign in Figure BG1–26 does not have a black diamond

component because it is not occupied.

Figure BG1–26
Class place
constraints on
tuple places

4.1.2 Occupied class place constraints on tuple places

A class place object constrains which tuples can be members of its tuples class.

In the example in Figure BG1–26, the fathers class is a place object, which implies

the existence of a fathers tuple place in the tuple members of the tuples class. In

simpler language, this means that one of the places of each tuple member of the

tuples class is designated a father tuple place and must be occupied by a member

of the father's class.

In the example illustrated in Figure BG1–26, the first place in the couple is desig-

nated the father couple place. This means that a couple with Prince Charles in its

first place (<Prince Charles, ?>) can be a member of the father-child tuples class

because Prince Charles is a member of the class fathers. But any couple with the

format <Prince William, ?> cannot be a member, because Prince William is not a

member of the fathers class.

4.1.3 Tuple and tuples class names

Tuples classes have names in the same way as other classes. However, in addi-

tion, both tuples and tuples classes have a name constructed from the names on

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

 is a fath er of

 f o dli hc a si

PRINCE
CHARLES

PRINCE
WILLIAM

Fathers Class
Tuple Places

CLASS

MEMBER

Tuples Class
Place Object

Composite
Tuples

Class Sign

Occupied
Tuples Class Place
Component Sign

FATHER-CHILD
TUPLES

FATHER-CHILD
TUPLES

r
e
fe

r
s
 t

o

FATHERS

FATHERS

FATHER

r
e
fe

r
s
 t

o

BG1-33

BORO
4.2 Tuples classes inheriting patterns from classes

Constructing Signs for Business Objects

their class place signs. The convention for constructing these names is that one

of the class place signs is picked and then a mental walk is taken along the class

place (or place) sign to the tuples class (or tuple) sign reading the text on the left

and then along to the next class place (or place) sign.

In the example in Figure BG1–27, there are two ‘walks’. We can start at the father

member sign, and mentally walk past the father–child tuples to the child member

sign, reading the ‘is the father of’ text on the left. This gives us the name

‘father—is the father of—child’. Mentally walking the other way, from child to

father, would give us the name ‘child—is child of—father’.

Figure BG1–27
Convention for
reading tuple
names

4.2 Tuples classes inheriting patterns from classes

We can now begin to take advantage of the power that re-using patterns brings.

We can re-use the class pattern on tuples classes. As we have just seen, they are

classes—in class-speak; they are a sub-class of the class classes. So they

inherit all the characteristics of a class and share all its patterns. For instance:

• They have tuple super–sub-class and tuple class–member hierarchies.

• They have child– and descendant–sub-tuples-classes.

BG1-34

4 Constructing signs for tuples

Constructing Signs for Business Objects

BORO

• They have nearest– and distant– class–member tuples.

They will also automatically inherit any new class patterns we construct (for

example, the distinct and overlapping patterns we examine in the next paper,

BG2— Constructing Signs for Business Objects’ Patterns). Tuples classes inherit all

this as the result of being a class object. We now look at an example of a class

pattern being re-used for tuples classes, the tuple super–sub-class hierarchies.

4.2.1 Tuple super–sub-class hierarchies

As tuples classes are classes they can also have super– and sub-classes. For

instance, parent–child tuples is a super-class of father–son tuples (shown in Fig-

ure BG1–28). Notice that the super–sub-class tuple uses the standard super–

sub-class tuple sign.

Figure BG1–28
Super–sub-
tuple-class sign

Modelling

super-sub

place

classes

Care needs to be exercised when working out the super–sub-class tuples

between the place classes of tuple super- and sub-classes. This tends to come

with practice. In particular, as one moves from a tuple subclass to a tuple super-

cools, the place classes should either remain the same or move up to a super-

class. This is easiest to explain with an example.

Look at Figure BG1–28, the father–son tuples class has as one of its class place

objects, the fathers class. Its super-class, parent–child tuples, has as its corre-

sponding class place object, the parents class. As parents is a super-class of

fathers, we can go in a full circle. Starting from father–son tuples we go along to

fathers, up to parents, along to parent–child tuples and back down to where we

started, father–son tuples. This works because place classes of a tuples super-

FATHERS

FATHER

PARENTS

PARENT

SONS

SON

CHILDREN

CHILD

is a father of

f o dli h c a si

is a parent of

f o nos a si

Composite Super-
Sub-
Tuples-
Class
Sign

PARENT-CHILD
TUPLES

Component
Sub-Tuples-

Class Sign

FATHER-SON
TUPLES

BG1-35

BORO
5.1 What are whole–part tuples?

Constructing Signs for Business Objects

class need to be either the same as or super-classes of the corresponding place

classes of their tuples sub-class.

For an example of incorrect modelling, look at Figure BG1–29. We cannot trace a full

circle here because mothers is (rightly) not signed as a super-class of fathers.

The problem here is that mother–child tuples has been signed incorrectly as a

super-class of father–son tuples.

Figure BG1–29
Incorrect
super–sub-
class tuple

5 Constructing signs for whole–part tuples

In Part Four, we noted how important whole–part tuples were to object seman-

tics. This is recognised in the notation by giving whole–part tuples their own sign.

We look at it now, along with the patterns of the underlying whole–part tuples

that it is used to sign. We noted, inOP4—Business Object Ontology Paradigm, that

the whole–part pattern is similar to the super–sub-class pattern. Here we see

more evidence of this.

5.1 What are whole–part tuples?

But first let us remind ourselves how whole–part tuples fit into the class frame-

work. Consider this example. My fingers are part of my hand. This means that

there is a connection between my fingers and my hand. Using the same analysis

as we used for general tuples above, this is a couple object <my fingers, my hand>,

which is a member of the whole–part tuples class. This analysis is shown in Figure

FATHERS

FATHER

MOTHERS

MOTHER

SONS

SON

CHILDREN

CHILD

is a father of

f o dli h c a si

is a mother of

f o nos a si

MOTHER-CHILD

TUPLES

FATHER-SON

TUPLES

BG1-36

5 Constructing signs for whole–part tuples

Constructing Signs for Business Objects

BORO

BG1–30. Because the whole–part couple has its own sign, the whole–part tuples

class sign and its class–member sign are redundant. They are only included in this

model to make absolutely clear what the whole–part tuple is.

Figure BG1–30
My fingers are
part of my hand

The composite whole–part sign is constructed from familiar components.

Because the couple is a tuple, we use a tuple sign for it. As we mentioned above,

the whole–part and the super–sub-class tuples are similar kinds of tuples, oper-

ating at different levels. So they have the same composite sign. Until now, we

have called this the sub-class sign, but as we are generalising it across sub-class

and whole–part, we rename it the sub-part sign.

The example above is of particular individuals. There are also classes whose mem-

bers have whole–part patterns. We can extend the example to illustrate this. Fin-

gers are parts of hands—in class-speak; the individual members of the fingers

class are parts of the individual members of the hands class. How do we sign this

whole–part tuple between members of a class? We use the individual whole–part

sign, but suitably amended to show that it is the sign of a tuples class instead of

a tuple – as shown in Figure BG1–31). Like the tuple level sign, the whole–part

ND AHYM

MY

F
IN

GER

MY
HAND

SUB-PART
TUPLES

MY
FINGER

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

Sub-Part Tuple
Component Sign

Composite
Sub-Part
Tuple Sign

SUPER-SUB-CLASS
TUPLES

WHOLE-PART
TUPLES

s
u

p
e
r
flu

o
u

s
 s

ig
n

s

BG1-37

BORO
5.2 Individuals whole–part tuple hierarchy

Constructing Signs for Business Objects

tuples class sign and its class–member sign are superfluous because the hand–

finger tuples is signed as a whole–part tuples class.

Figure BG1–31
Fingers are part
of hands

5.2 Individuals whole–part tuple hierarchy

The individual whole–part tuples create an individual whole–part hierarchy. For

instance, my fingers are part of my hand, my hand is part of my arm, and my arm

is part of my body (shown in Figure BG1–32). As we can see, this is, in many ways, a

super–sub-class hierarchy for individual objects.

Figure BG1–32
Individual
whole–part
tuple hierarchy

MY
FINGER

MY
HAND

HANDS

HAND

FINGERS

FINGER

Composite
Sub-Part
Tuples Class
Sign

Sub-Part
Component Sign

SUB-PART
TUPLES

SUPER-SUB-CLASS
TUPLES

WHOLE-PART
TUPLES

HAND-FINGER
TUPLES

s
u

p
e
r
flu

o
u

s
 s

ig
n

s

MY ARM MY HANDMY BODY MY FINGER

BG1-38

5 Constructing signs for whole–part tuples

Constructing Signs for Business Objects

BORO

5.3 Classes whole–part tuple hierarchy

Individual whole–part hierarchies can be generalised into whole–part tuples class

hierarchies. For instance, the individual whole–part hierarchy shown in Figure BG1–

32 can be generalised to the class level (shown in Figure BG1–33.)

Figure BG1–33
Whole–part
tuple class
hierarchy

5.4 Child– and descendant–parts

Just as we drew a distinction between child– and descendant–sub-classes in the

super–sub-class hierarchy, we draw a corresponding distinction here between

child– and descendant–parts. To see this, we add all the potential whole–part

tuples to the model in Figure BG1–32 (see the result shown in Figure BG1–34).

Figure BG1–34
Child– and
descendant–
part tuples

A child–part is one that has no intervening parts (in the particular model being

considered). Descendant–part tuples are ones with intervening parts. For exam-

ple, in Figure BG1–34, ‘my fingers are part of my hand’ is a child–part tuple.

Whereas, as ‘my finger is part of my arm’ is a descendant–part tuple because it

has my hand as an intervening part.

ARMS

ARM

BODIES

BODY

MY ARM

HANDS

HAND

MY HANDMY BODY

FINGERS

FINGER

MY FINGER

Child-Part Tuple Signs

Descendant-Part
Tuple Signs

MY ARM MY HANDMY BODY MY FINGER

BG1-39

BORO
5.5 Deducing descendant–part signs

Constructing Signs for Business Objects

5.5 Deducing descendant–part signs

Like descendant–sub-class tuples, a descendant–part tuples sign can be

deduced from the child–part tuple signs and more generally from whole–part

tuple signs. This deduction has the same pattern as the descendant–sub-class

deduction:

A is a whole–part of B

B is a whole–part of C

C is a whole–part of D

D is a whole–part of E

Therefore:A is a descendant–part of E

Where there can be any number of whole–part lines (except zero and one of

course). An actual example is:

My finger is a part of my hand, and

My hand is a part of my arm

ThenMy finger is a (descendant–) part of my arm.

Figure BG1–35 shows this deduction graphically.

Figure BG1–35
Descendant–
part tuple
deduction

Calculated
Descendant-
Part Tuple

MY ARM MY ARM

MY HAND MY HAND

MY FINGER MY FINGER

BEFORE AFTER

BG1-40

6 Constructing signs for dynamic objects

Constructing Signs for Business Objects

BORO

6 Constructing signs for dynamic objects

So far we have been constructing signs for timeless objects. We now look at signs

for the time-bound dynamic objects described in OP4—Business Object Ontology

Paradigm:

• The here event class,

• The now event class, and

• Current couples.

6.1 Constructing a sign for the ‘here’ event class

The here event class has as its single member an instantaneous time-slice of the

system object—a physical body. This member moves, like all the dynamic events,

along the time dimension with the system’s ‘consciousness’. The composite sign

for the here event class is a circle, the component sign for a dynamic object, with

the name ‘HERE’ in it (shown in Figure BG1–36).

Figure BG1–36
Sign for the
‘here’ event
class

r
e
fe

r
s
 t

o

HERE

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

HERE

Dynamic Object
Component
Sign

Here Class Name
Component Sign

SYSTEM
OBJECT

HERE EVENT CLASS

BG1-41

BORO
6.2 Constructing a sign for the ‘now’ event class

Constructing Signs for Business Objects

6.2 Constructing a sign for the ‘now’ event class

The ‘now’ event class has as its single member the instant that contains the

‘here’ event class’s member. It is signed using a circle containing a clock face – as

shown in Figure BG1–37.

Figure BG1–37
Sign for the
‘now’ event
class

6.3 Constructing a sign for a current tuple

We now construct the signs for the current tuples class and its members, cur-

rent tuples. However, the current tuples class sign is, to an extent, superfluous

because any tuple signed as current automatically belongs to the current tuples

class. This is done using a component dynamic circle sign (illustrated in Figure

BG1–38). As you can see, one of the sign’s current tuple places is linked to the now

event class, the other(s) to the object(s) currently classified as current.

You can also see the current tuples class signed in Figure BG1–38 as a tuples

class with the dynamic circle component sign around it.

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

Dynamic Object
Component
Sign

Now Class Icon
Component Sign

Here
Object

SPACE-TIME

NOW CLASS

SYSTEM OBJECT

BG1-42

7 Signs as objects—modelling the model

Constructing Signs for Business Objects

BORO

Figure BG1–38
Sign for a
current tuple

7 Signs as objects—modelling the model

Object semantics applies to signs in the model as well as the objects that are

modelled. According to object semantics, everything is an object with four-

dimensional extension. Even the signs in the model are objects—they are model

objects. We can see this clearly when we start modelling the model. This is not

meta-modelling, this is more like modelling x modelling or (modelling)2.

This (modelling)2 clarifies one aspect of modelling that people sometimes find

confusing. This is that the type of an object (for example, body or event), and the

type of the model object that models it, are often quite different. This confusion

about types sometimes manifests itself as a belief that the distinction between

data and process in information systems (the signs in the model) reflects the

distinction between objects and events in the real world. This resolves itself into

a belief that data reflects objects and process reflects events. We discussed

how mistaken this belief is in AS4—Focusing on the Things in the Business.

CURRENT
TUPLES

JOHN'S
CAR

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

Dynamic
Current Tuples
Composite
Sign

Dynamic
Current Tuple
Composite
Sign

SPACE-TIME

JOHN'S
CAR

CURRENT
TUPLES

NOW CLASS
r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

BG1-43

BORO
7.1 A (modelling)2 model

Constructing Signs for Business Objects

7.1 A (modelling)2 model

Look at the (modelling)2 model in Figure BG1–39. It models examples of the four

major types of signs in our object notation; the individual body and event objects

and the bodies and events classes. As the model shows, all these signs (model

objects), are all individual physical bodies, whatever they refer to—whether

event, class or body.

Figure BG1–39
Modelling body
and event model
objects

The model object for my car is an individual body sign. This sign is, like the body

object it refers to, an individual body object in its own right. It has extension, it

persists through time—though maybe not for as long as the body object it

refers to. Individual body signs are the only type of model object where the model

object and the object it refers to are of the same type.

The individual event sign is, like the individual body sign, an individual body. It has

extension and it persists through time—it has spatial and temporal dimensions.

However, the event model object, unlike the individual body object, is not of the

same type as the object it refers to. The ‘accident 25/5/95’ sign is a body object

with temporal extension; the accident it refers to is an event that does not per-

sist through time.

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

M
O

D
E
L

D
O

M
A

IN

(M
O

D
E
L
)
2

ACCIDENTS

r
e
fe

r
s
 t

o

ACCIDENTS

ACCIDENT

ACCIDENT
ON 25/5/95

r
e
fe

r
s
 t

o

MY CAR

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

CARS

r
e
fe

r
s
 t

o

CARS

 CAR

MY CAR
SIGN

CARS
SIGN

ACCIDENTS
SIGN

ACCIDENT
ON 25/5/95

SIGN

MODEL
SIGNS

BG1-44

8 What’s next

Constructing Signs for Business Objects

BORO

Model class objects, like the model individual objects, are individual bodies and so

different in type from the objects they refer to. The event and body class exam-

ples in Figure BG1–39 illustrate how constructed objects with an internal struc-

ture, such as the two class objects, are flattened out in the object model into

individual physical body objects. This (model)2 structure is illustrated in Figure

BG1–40.

Figure BG1–40

(Model)2
objects

8 What’s next

We have now looked at signs for all the major types of individual objects that we

need to business object model. We have got a feel for what they mean and how

they work. We are well on our way to being ready to start business modelling. In

the following paper (BG2— Constructing Signs for Business Objects’ Patterns), we

look at the syntax of business object patterns. We see how we can use the object

notation to model patterns of business objects.

ACCIDENT ON
25/5/95
SIGN

INDIVIDUAL
EVENT SIGNS

ACCIDENTS
SIGN

BODIES

MODEL
SIGNS

EVENT CLASS
SIGN

(M
O

D
E
L
)
2

MY CAR
SIGN

INDIVIDUAL
BODY SIGNS

CARS
SIGN

BODY CLASS
SIGNS

BG1-45

BORO
BORO Working Papers - Bibliography

The BORO Working Papers

Volume A

A—The BORO Approach

Book AS

AS—The BORO Approach: Strategy

AS1—An Overview of the Strategy

AS2—Using Objects to Reflect the Business Accurately

AS3—What and How we Re-engineer

AS4—Focusing on the Things in the Business

Volume - O

O—ONTOLOGY Papers

Book - OP

OP—Ontology: Paradigms

OP1—Entity Ontology Paradigm

OP2—Substance Ontology Paradigm

OP3—Logical Ontology Paradigm

OP4—Business Object Ontology Paradigm

Volume - B

B—Business Ontology

Book - BO

BO—Business Ontology: Overview

BO1—Business Ontology - Some Core Concepts

Book - BG

BG—Business Ontology: Graphical Notation

Constructing Signs for Business Objects

BG1-46

BORO Working Papers - Bibliography

BORO

Graphical Notation I

BG1— Constructing Signs for Business Objects

Graphical Notation II

BG2— Constructing Signs for Business Objects’ Patterns

Volume - M

M—The BORO Re-Engineering Methodology

Book - MO

MO—The BORO Re-Engineering Methodology: Overview

MO1—The BORO Approach to Re-Engineering Ontologies

Book - MW

MW—The BORO Methodology: Worked Examples

Worked Example 1

MW1—Re-Engineering Country

Worked Example 2

MW2—Re-Engineering Region

Worked Example 3

MW3— Re-Engineering Bank Address

Worked Example 4

MW4—Re-Engineering Time

Book - MA

MA—The BORO Re-Engineering Methodology: Applications

MA1—Starting a Re-Engineering Project

MA2—Using Business Objects to Re-engineer the Business

Book - MC

MC—The BORO Re-Engineering Methodology: Case Histories

Case History 1

MC1—What is Pump Facility PF101?

BORO

Symbols–H

BG1-47

Symbols

(modelling)2 model - - - - - - - - - - - - - - - - BG1-43–BG1-44

A

accuracy (and inaccuracy) - - - - - - - - - - - - - - - BG1-11

Aristotle
syllogism - BG1-21, BG1-27

C

class
sign for - BG1-6, BG1-8

class of classes
sign for - BG1-16

class–member
deducing distant-class–member sign BG1-26

hierarchy - BG1-16

sign for - BG1-9–BG1-17

sign for distant- and nearest-class–

member - - - - - - - - - - - - - - BG1-26

virtual distant-class–member signs BG1-28

compacting
with virtual tuples - - - - - - - - - - - - BG1-22, BG1-28

computer technology - - - - - - - - - - - - - - - BG1-2–BG1-4

consciousness – time-based - - - - - - - - - - - BG1-40

constructive nature of modelling - - - - - - - - BG1-15

current tuple

sign for - BG1-41

D

data–process distinction - - - - - - - - - - - - - - - BG1-42

distorted
by a tree structure - - - - - - - - - - - - - - - - - - - BG1-19

dynamic object -BG1-2

sign for - BG1-40–BG1-41

E

explicit
business model - BG1-20

class–member tuple - - - - - - - - - - - - - - - - - - BG1-13

sign for patterns -BG1-2

extension
four-dimensional - BG1-42

F

flexibility - BG1-1

H

here event class - BG1-40

INDEX B G 1
B U S I N E S S O N T O L O G Y :

G R A P H I C A L N O T A T I O N - 1

CONSTRUCTING SIGNS FOR
BUSINESS OBJECTS

BG1-48

BORO

I–T INDEX

I

individual object – sign for - - - - - - - - - - BG1-4–BG1-6

inheritance - - - - - - - - - - - - - - - - - - - BG1-16, BG1-24, BG1-33

L

logical paradigm
class–member pattern - - - - - - - - - - - - - - - BG1-11

super–sub-class pattern - - - - - - - - - - - - -BG1-18

M

membership information – modelling lack of

BG1-12–BG1-15

N

now event class - BG1-41

O

object syntax - - - - - - - - - - - - - - - - - - - BG1-1–BG1-2, BG1-9

occupied class place
constraints on tuple places - - - - - - - - - BG1-32

sign for - BG1-31

P

paper and ink technology - - - - - - - - - - - - - - - - BG1-22

object paradigm -BG1-2

R

redundant patterns - BG1-36

reference - BG1-4

diagram - BG1-17, BG1-23

re-use
patterns - BG1-33

S

signs as objects – modelling the model BG1-42–

BG1-44

structure – lattice and tree
super–sub-class hierarchy - - - - - - - - - - - BG1-19

sub-part
sign for - BG1-36

super–sub-class
confused with class–member pattern - - - - -

BG1-28

deducing descendant–sub-class signs - - - -

BG1-21

inheritance - BG1-20

sign for a tuple - BG1-18

sign for a tuples class - - - - - - - - - - - - - - - BG1-29

sign for child– and descendant–sub-class -

BG1-20–BG1-21

virtual descendant–sub-class signs -BG1-22

super–sub-class hierarchy BG1-20, BG1-23–BG1-24,

BG1-26

class membership inheritance - - - - - - - BG1-24

natural structure - BG1-19

non-circular structure - - - - - - - - - - - - - - - BG1-23

T

timelessness - BG1-40

time-slice - BG1-40

tuple
sign for - BG1-30–BG1-33

tuple place - BG1-31

tuples class -BG1-31–BG1-32

super–sub-class hierarchy - - - - - - - - - - BG1-34

BG1-49

BORO

W–W INDEX

W

webby pattern - BG1-24

whole–part
child– and descendant–part - - - - - - - - BG1-38

deducing descendant–part signs - - - BG1-39

hierarchy - BG1-37–BG1-38

signs for - BG1-35

whole–part pattern
and super–sub-class pattern BG1-18, BG1-35–

BG1-36

	CONTENTS
	1� Introduction
	1.1 Main types of business object
	1.2 Why use a two-dimensional notation for a multi-dimensional model?

	2� Constructing signs for individual objects
	2.1 Constructing a sign for an individual body
	2.2 Constructing a sign for an individual event
	2.3 Constructing individual object name sign components

	3� Constructing signs for classes of objects
	3.1 Constructing a sign for a class of individual objects
	3.1.1 Constructing a sign for a class of individual events
	3.1.2 Constructing a sign for a class of individual bodies
	3.1.3 Constructing class name and member name sign components

	3.2 Constructing a sign for a class–member tuple
	3.2.1 Classes and members
	3.2.2 Modelling lack of membership information
	3.2.3 Classes as members of classes

	3.3 Constructing a sign for a super–sub-class tuple
	3.3.1 The super–sub-class pattern
	3.3.2 Super–sub-class hierarchies
	3.3.3 Super–sub-class tuples class

	4� Constructing signs for tuples
	4.1 Constructing a tuple of individual objects and a tuples class
	4.1.1 Occupied class place signs
	4.1.2 Occupied class place constraints on tuple places
	4.1.3 Tuple and tuples class names

	4.2 Tuples classes inheriting patterns from classes
	4.2.1 Tuple super–sub-class hierarchies

	5� Constructing signs for whole–part tuples
	5.1 What are whole–part tuples?
	5.2 Individuals whole–part tuple hierarchy
	5.3 Classes whole–part tuple hierarchy
	5.4 Child– and descendant–parts
	5.5 Deducing descendant–part signs

	6� Constructing signs for dynamic objects
	6.1 Constructing a sign for the ‘here’ event class
	6.2 Constructing a sign for the ‘now’ event class
	6.3 Constructing a sign for a current tuple

	7� Signs as objects—modelling the model
	7.1 A (modelling)2 model

	8� What’s next
	BORO Working Papers - Bibliography
	INDEX

