
Program

i

s

m

B usiness

O bject

R eference

O ntology

p

l

i

f

y

i

n

g

s

e

m

a

n

t

i

c

s

Working
Paper

BG2

BUSINESSONTOLOGY:
GRAPHICALNOTATION-2

CONSTRUCTING SIGNS FOR
BUSINESS OBJECTS’ PATTERNS

Issue: Version - 4.01 - 01-July-2001

Copyright Notice © Copyright The BORO Program, 1996-2001.

Notice of Rights All rights reserved. You may view, print or download this document for evaluation

purposes only, provided you also retain all copyright and other proprietary

notices. You may not, however, distribute, modify, transmit, reuse, report, or use

the contents of this Site for public or commercial purposes without the owner’s

written permission.

Note that any product, process or technology described in the contents is not

licensed under this copyright.

For information on getting permission for other uses, please get in touch with

contact@BOROProgram.org.

Notice of liability We believe that we are providing you with quality information, but we make no

claims, promises or guarantees about the accuracy, completeness, or adequacy

of the information contained in this document. Or, more formally:

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

OR NON-INFRINGEMENT.

Contact For queries regarding this document, or the BORO Program in general, please use

the following email address:

contact@BOROProgram.org

BG2-iii

BORO

C O N T E N T S

1 Introduction - BG2-1

2 Patterns for the connections between extensions - - - - - - - - - - - - - - BG2-1

2.1 Individual object level patterns - BG2-2

2.2 Class object level patterns - BG2-12

3 State hierarchy patterns- BG2-24

3.1 The state–of sign - BG2-24

3.2 State–sub-state hierarchy patterns - BG2-25

3.3 State–sub-class hierarchy patterns - BG2-26

3.4 Other extension-based state patterns- BG2-27

4 Time ordered temporal patterns - BG2-28

4.1 State changes - BG2-29

4.2 Event cause and effect time orderings - BG2-32

4.3 Time ordering tuple objects - BG2-33

5 Cardinality patterns for tuples classes - BG2-34

5.1 Types of cardinality pattern- BG2-35

5.2 Cardinality patterns as objects - BG2-39

5.3 Inheriting cardinality patterns -BG2-41

6 A pattern for compacting classes - BG2-42

6.1 Constructing an example of the pattern- BG2-42

6.2 Using the pattern to compact the model- BG2-43

B G 2
B U S I N E S S O N T O L O G Y :

G R A P H I C A L N O T A T I O N - 2

CONSTRUCTING SIGNS FOR BUSINESS

OBJECTS’ PATTERNS

BG2-iv

EBORO

CONTENTS
BG2

7 Summary - BG2-44

BORO Working Papers - Bibliography - BG2-47

INDEX - BG2-49

BG2-1

BORO

1 Introduction

The working paper BG1— Constructing Signs for Business Objects describes how to

construct signs for the basic types of objects in object semantics. In this paper

we move up a level. Instead of looking at individual signs, we look at the syntax of

signs that describe patterns of business objects. We examine how this syntax

works using the following examples of fundamental patterns found in our investi-

gations of object semantics in OP4—Business Object Ontology Paradigm:

• Patterns for the connections between extensions,

• State hierarchy patterns,

• Time ordering patterns,

• Cardinality patterns for tuples classes, and

• Patterns for compacting classes.

2 Patterns for the connections between extensions

Extension is a central notion of logical and object semantics. Many of the pat-

terns we have analysed so far turn out to have structures based on it. For

B G 2
B U S I N E S S O N T O L O G Y :

G R A P H I C A L N O T A T I O N - 2

CONSTRUCTING SIGNS FOR
BUSINESS OBJECTS’ PATTERNS

BG2-2

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

instance, the sub-part tuple (the generalised whole–part and super–sub-class

tuple) is based on the extension of one of the related objects containing the

other.

Closely related to sub-part tuples are two other patterns based on structural

connections between extensions: the distinct and overlapping patterns. These

two patterns occur at two levels:

• The individual object level, and

• The class level.

This is similar to the sub-part pattern, which is the whole–part pattern at the

individual object level and the super–sub-class pattern at the class level. Let’s

now investigate these patterns, starting at the individual object level.

2.1 Individual object level patterns

At the individual object level, any number of individual objects can have the dis-

tinct or overlapping pattern, but the pattern is at its simplest when only two

objects are involved. So we start by looking at pairs of distinct and overlapping

objects then move onto larger groups of objects. Finally, we examine the following

associated patterns:

• Inheriting distinct and overlapping patterns,

• Known and unknown distinct and overlapping individual objects,

• Partition patterns for distinct individual objects,

• Intersection pattern for overlapping individual objects, and

• Fusion pattern for individual objects.

We also work out what objects the signs for distinct and overlapping individual

patterns refer to.

BG2-3

BORO
2.1 Individual object level patterns

Constructing Signs for Business Objects’ Patterns

2.1.1 Distinct pairs of individual objects

Two individual objects that do not have any spatio-temporal parts in common are

distinct. For example, my car and me are distinct—no part of my car is also a

part of me. We model this distinct pattern with the sign shown in Figure BG2–1.

Figure BG2–1
Distinct
individual
objects sign

2.1.2 Overlapping pairs of individual objects

A pair of individual objects that have parts in common overlap. For example, the

island of Ireland and the country United Kingdom overlap; the country of Northern

Ireland is a part of both individual objects. We model this overlapping pattern with

the sign shown in Figure BG2–2. (This and subsequent examples involving coun-

tries use our simple intuitive view of country objects. We re-engineer a more

sophisticated view in MW—The BORO Methodology: Worked Examples.)

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

MY CARME

Composite
Distinct
Sign

Distinct
Component

Sign

BG2-4

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–2
Overlapping
individual
objects sign

2.1.3 Three main types of connection for pairs of individual objects

We have now looked at what are, from an extension point of view, the three main

patterns of connection between pairs of individual objects; distinct, overlapping

and whole–part. As illustrated by Figure BG2–3, a pair of individual objects must

fall under one of these patterns. It could be argued that the whole–part pattern,

where one individual object completely contains another, is an extreme case of

overlapping. However, the convention is to consider these as separate patterns

with their own signs.

Figure BG2–3
Pattern for
individual
objects

Composite
Overlapping
Sign

Overlapping
Component

Sign

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

ISLAND OF
IRELAND

UNITED
KINGDOM

DISTINCT PART OFOVERLAPPING

OBJECT B

OBJECT A

OBJECT A

OBJECT B

OBJECT A

OBJECT B

BG2-5

BORO
2.1 Individual object level patterns

Constructing Signs for Business Objects’ Patterns

2.1.4 Larger groups of individual objects

Groups of individual objects larger than two can have a variety of patterns of con-

nection. All the individual objects can be distinct [as shown schematically in Fig-

ure BG2–4 (a)]. Or they can all overlap [shown in Figure BG2–4 (b)]. It is also

possible that some will be distinct and others will overlap. Furthermore, it is pos-

sible that even if every pair in a group of individual objects overlap, the whole group

will not overlap [shown schematically in Figure BG2–4 (c)]. The same is not true for

distinctness; if every pair is distinct, then the whole group is distinct.

Figure BG2–4
Schemas for
larger numbers
of individual
objects

2.1.5 Inheriting distinct and overlapping patterns

Distinct and overlapping patterns for individual objects are inherited in opposite

directions along the whole–part hierarchy. Distinctness is inherited down the

hierarchy. So, as the United States and France are distinct, their parts—for

example, Texas and Bordeaux—are also distinct. This is modelled in Figure BG2–5.

The model also shows NATO and the EEC (which have the United States and

France as parts) overlapping, proving that distinctness is not inherited up the

whole–part hierarchy.

OBJECT COBJECT COBJECT C

OBJECT B OBJECT B OBJECT BOBJECT A OBJECT AOBJECT A

OBJECT A

OBJECT C

OBJECT BOBJECT A
OBJECT B

OBJECT C

OBJECT A OBJECT B

OBJECT C

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

(a) (b) (c)

BG2-6

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–5
Inheriting
distinctness

Overlapping is inherited up the whole–part hierarchy. So, as London and the River

Thames overlap, any wholes of which they are parts also overlap. For instance,

South-East England and the River Thames and its tributaries overlap. Overlap-

ping, however, is not inherited down the hierarchy (illustrated by the distinct City

of London and Thames Estuary in the model in Figure BG2–6).

Figure BG2–6
Inheriting
overlapping

This inheritance has implications for how we model. I have found it useful to push

the distinct connections as far up the whole–part hierarchy as they will go and

the overlapping connections as far down the hierarchy as they will go. This

increases the number of objects that can inherit the pattern and so automati-

cally increases the functionality of the model. It also compacts the model as it

NATO EEC

FRANCE

BORDEAUX

UNITED

STATES

TEXAS

inherited

RIVER THAMES

AND ITS

TRIBUTARIES

SOUTH-EAST

ENGLAND

inherited

RIVER

THAMES
LONDON

THAMES

ESTUARY

CITY OF

LONDON

BG2-7

BORO
2.1 Individual object level patterns

Constructing Signs for Business Objects’ Patterns

replaces a number of lower-level distinct connections (higher-level overlapping

connections) with a single connection.

2.1.6 Known and unknown distinct and overlappingpatterns

As mentioned earlier, a pair of individual objects must either be distinct, overlap

or one part of the other. However,l we do not always know which pattern holds and

sometimes cannot find out without considerable analysis. In many cases, it is not

worth the effort of finding out and we can leave the point unresolved. In this situ-

ation, we model our ignorance with a lack of signs.

A more subtle ignorance occurs when two individual objects are signed in the

model as overlapping, but appear distinct because no common part objects are

signed. For example, the model in Figure BG2–2 signs the island of Ireland and the

country, the United Kingdom, as overlapping but does not contain an overlapped

object that is a part of the two objects. However, this does not imply that the

objects are distinct, just that the model does not ‘know’ any of the parts in the

overlap.

2.1.7 The distinct and overlapping individual objects pattern objects

According to object semantics, we should be able to point to the objects referred

to by a model’s signs. None of the signs should refer to mysterious unknowable

objects. This raises the question of what objects the distinct and overlapping

signs refer to. Take, for example, the distinct sign in Figure BG2–1. What object

does this refer to?

The distinct and overlapping individual object signs work in a similar way to the

individual whole–part sign and most other pattern signs. They refer to an object

and its class. It is tempting to suggest that as we talk about distinctness as a

connection, that the distinct sign should, like the whole–part sign, refer to a

tuple object. This will not work because the distinct and overlapping patterns are,

unlike the whole–part pattern, symmetric.

BG2-8

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

This means that saying ‘A is distinct from B’ is no different from saying ‘B is dis-

tinct from A’. (Saying ‘my hand is part of my arm’ is different from ‘my arm is part

of my hand’.)

We can see how this causes a problem with an example. Consider the distinct sign

in Figure BG2–1. Assume that this refers to the tuple <me, my car>. The couple

<me, my car> is belongs to the distinct tuples class. We have no guarantee that

the couple <my car, me> also belongs to the distinct tuples class. This raises the

decidedly contradictory possibility of me being distinct from my car, while at the

same time my car is not distinct from me.

The distinct and overlapping objects are actually the classes of the distinct (or

overlapping) objects. In the example, the distinct object is the class {me, my car}.

Our earlier problem is resolved, because, unlike a tuple, members of a class are not

ordered; {me, my car} is the same class as {my car, me}. The distinct and overlap-

ping pattern objects, are then classes of classes—the class of distinct class

objects and the class of overlapping class objects. Examples of the two pattern

objects are diagrammed in Figure BG2–7.

Figure BG2–7
Individual object
examples of
distinct and
overlapping
pattern objects

REAL WORLD

OVERLAPPING PATTERN OBJECT

OBJECT SCHEMA

UNITED
KINGDOM

ISLAND OF
IRELAND

OVERLAPPING
IRELAND/UK
OBJECT

OVERLAPPING
PATTERN
OBJECT

UNITED
KINGDOM

ISLAND OF
IRELAND

s
u

p
e
r
fl

o
u

s
 s

ig
n

s

sign for
overlapping
individual

object

refers to

refers to

OVERLAPPING

DISTINCT
PATTERN OBJECT

ME

MY CAR

DISTINCT

BG2-9

BORO
2.1 Individual object level patterns

Constructing Signs for Business Objects’ Patterns

2.1.8 Partitioning patterns for distinct individual objects

Distinct patterns, particularly useful distinct patterns, frequently arise from

the partition of an object into distinct parts. We find this a natural way of seeing.

For instance, when we see a person, we are almost instinctively already partition-

ing them—arms (hairy), legs (long), face (round), etc. The partitioning objects are

distinct parts of the whole object and we can model this by combining the whole–

part and distinct patterns into a partition pattern. The sign for the composite

pattern is shown in Figure BG2–8. The component whole–part tuple sign describes

the whole–part element and the partition box, the distinct element. Individual

objects contained within the partition box are distinct.

Figure BG2–8
A partitioned
individual object

When we model, we often do not want to partition an individual object completely;

we only want to look at some of its parts. Then, we use a partial or incomplete

partition. We sign the incompleteness with a partial sign (a small flat rectangle)

between the whole–part sign and the partition box (shown in Figure BG2–9).

FRED

FRED'S
HEAD

FRED'S
TORSO

FRED'S
ARMS

FRED'S
LEGS

Superfluous
Distinct

Sign

Composite
Whole-Part
Partition
Sign

Whole-Part Tuple
Component

Sign

BG2-10

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–9
An incompletely
partitioned
individual object

2.1.9 Inheriting partition patterns

Individual object partitions are inherited down the whole–part hierarchy as the

example in Figure BG2–10 shows. The partition of the United States into the

Northern United States and the Southern United States is inherited by the

Western United States—giving us the North-Western and South-Western

United States.

Figure BG2–10
Individual object
partition
inheritance

As with distinct and overlapping inheritance, this has implications for how we

model partitions. I have found it useful to push the partitions as far up the whole–

part hierarchy as they will go. This increases the number of objects that can

FRED

FRED'S
ARMS

FRED'S
LEGS

Composite Whole-Part
Incomplete Partition
Sign

Incomplete Partition
Component Sign

NORTHERN
UNITED
STATES

SOUTHERN
UNITED
STATES

UNITED
STATES

WESTERN
UNITED
STATES

NORTH
WESTERN
UNITED
STATES

SOUTH
WESTERN
UNITED
STATES

inherited
partition

BG2-11

BORO
2.1 Individual object level patterns

Constructing Signs for Business Objects’ Patterns

inherit the pattern, and so automatically increases the functionality. It also com-

pacts the model, eliminating the need for a number of lower level partitions.

2.1.10 Intersection pattern for overlapping individual objects

Sometimes we take two overlapping individual objects and recognise their over-

lapping part as an object. This pattern is called an intersection and is signed in

the model. In the example shown in Figure BG2–11, we sign the intersection of the

island Ireland and the country, the United Kingdom, to give the country Northern

Ireland.

Figure BG2–11
Intersected
individual object

The intersecting object, the country Northern Ireland, is logically dependant on

the intersected objects. This is signed in the model in two ways. First, this is

shown by a logical dependency component sign. This is a black semi-circle at the

intersecting object end of the composite intersection sign (shown in Figure 10.11).

Second, Northern Ireland is signed as derived with a grey triangle in the bottom

left corner of the Northern Ireland sign. This derived component sign is needed

because, when the Northern Ireland sign appears on a schema that does not have

both the Ireland and the United Kingdom signs, we cannot draw its intersection

sign and so its logical dependency sign. Then, the derived sign reminds us that it

is logically dependent.

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

ISLAND OF
IRELAND

UNITED
KINGDOM

Composite
Intersection
Sign

Intersection
Component

Sign

NORTHERN
IRELAND

r
e
fe

r
s
 t

o

BG2-12

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

2.1.11 Fusion pattern for overlapping individual objects

Sometimes we construct a new object by fusing a number of overlapping individ-

ual objects. The extension of the new object is the fusion of the extensions of the

individual objects. If the individual objects were distinct (as in Figure BG2–10) then

we would have a partition pattern. Where they overlap, we have the potential for a

fusion pattern. For example, NATO and EEC overlap and so we can fuse them to

get NATO & EEC. This is the geographic area covered by countries that are mem-

bers of both NATO and the EEC. This fusion is recorded in the model in Figure BG2–

12 with a fusion sign. As with the intersecting pattern, the fusion pattern cre-

ates a logical dependency. This is signed with the same logical dependency and

derived signs.

Figure BG2–12
Fusion sign

2.2 Class object level patterns

The distinct and overlapping patterns between extensions, which we have just

examined for individual objects, appear again at the class level. Although, at that

level, the super–sub-class hierarchy plays the role of the whole–part hierarchy.

We now analyse the class level patterns in the same way as we analysed the indi-

vidual object level ones. Like before, we start with the simple patterns that hold

between pairs of distinct and overlapping classes before moving onto larger

groups of classes.

We then examine a similar set of associated patterns:

• Inheriting distinct and overlapping class patterns,

NATO EEC

Composite Fusion
Sign

Fusion Component
Sign

+

NATO
& EEC

BG2-13

BORO
2.2 Class object level patterns

Constructing Signs for Business Objects’ Patterns

• Known and unknown distinct and overlapping classes,

• Partitioning patterns for distinct classes,

• Intersection pattern for overlapping classes, and

• Fusion pattern for classes.

We also work out what objects the distinct and overlapping class signs refer to.

2.2.1 Distinct pairs of classes

A pair of classes that does not have any members in common is distinct. For

example, the classes birds and bees are distinct. A member of the class birds is

never a member of the class bees. As shown in Figure BG2–13, we sign this pattern

with the same distinct sign we use for individual objects. Distinctness is a con-

nection between classes; so, the class signs, and not their member signs, are

linked.

Figure BG2–13
Distinct sign

2.2.2 Overlapping pairs of classes

A pair of classes that has members in common overlap. For example, the classes

blondes and Germans overlap—there are Germans with blonde hair. As shown in

Figure BG2–14, we sign this pattern with the same overlapping sign that we use at

the individual object level. Overlapping, like distinctness, is a connection between

classes, so the overlapping sign links class signs.

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

Composite
Distinct
Sign

Component
Distinct

Sign

BIRDS

r
e
fe

r
s
 t

o

BEES

r
e
fe

r
s
 t

o

BIRDS

BIRD

BEES

BEE

BG2-14

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–14
Overlap sign

2.2.3 Three main types of connection for pairs of classes

From an extensional point of view, pairs of classes have a similar set of structural

patterns to individual objects. These are the distinct, overlapping and sub-class

(matching individual object’s whole–part) patterns shown in Figure BG2–15. A pair

of classes must fall under one of these patterns. We could regard the super–sub-

class pattern, where one class completely contains another, as an extreme case

of overlapping. However, in a similar fashion to individual objects, the convention is

to consider this a sub-class and not an overlapping pattern.

Figure BG2–15
Pattern for
classes

2.2.4 Larger groups of classes

As with individual objects, for groups of classes larger than two, there are a wider

variety of possible patterns of connection. It is possible for them all to be dis-

tinct [shown in Figure BG2–16 (a)]; or for them all to overlap [shown in Figure BG2–

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

Composite
Overlapping
Sign

Component
Overlapping

Sign

BLONDES

r
e
fe

r
s
 t

o

GERMANS

r
e
fe

r
s
 t

o

BLONDES

BLONDE

GERMANS

GERMAN

CLASS B

CLASS A

CLASS B

CLASS A

CLASS B

CLASS A

OVERLAPPING SUB CLASSDISTINCT

BG2-15

BORO
2.2 Class object level patterns

Constructing Signs for Business Objects’ Patterns

16 (b)]. It is also possible that some will be distinct and some will overlap. Even if

every pair in a group of classes overlaps, the whole group may not overlap [shown

in Figure BG2–16(c)]. However, the same is not true for distinctness. If every pair

of classes in a group is distinct, then the group is distinct.

Figure BG2–16
Schemas for
larger numbers
of classes

2.2.5 Inheriting distinct and overlapping patterns

Both the distinct and overlapping class patterns are inherited along the super–

sub-class hierarchy, but in opposite directions (matching the patterns for the

individual object level’s inheritance along the whole–part hierarchy). The distinct

pattern is inherited down the hierarchy. For example, the classes, birds and bees,

are distinct and so their sub-classes, robins and bumble bees, inherit that dis-

tinctness. But, as Figure BG2–17 illustrates, their super-classes flying animals

and insects do not, thus proving distinctness is not inherited upwards.

CLASS C

CLASS B
CLASS A

CLASS C

CLASS B
CLASS A

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

CLASS A CLASS A CLASS ACLASS B CLASS B CLASS B

CLASS C CLASS C CLASS C

CLASS A CLASS B

CLASS C

(a) (b) (c)

BG2-16

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–17
Inheriting
distinctness

Overlapping is inherited up the hierarchy. For example, as illustrated in

Figure BG2–18, the classes blondes and Germans overlap and so their super-

classes, haired people and Europeans do as well. However their sub-classes,

French blondes and Bavarians are distinct proving that overlapping is not inher-

ited down the hierarchy.

Figure BG2–18
Inheriting
overlapping

As with the individual level connections, this inheritance has implications for how

we model. We push the distinct connections as far up the super–sub-class hierar-

FLYING

ANIMALS

INSECTS

INSECT

BIRDS

BIRD

BEES

BEE

ROBINS

ROBIN

BUMBLE BEES

BUMBLE

BEE

inherited

HAIRED

PEOPLE

FRENCH

BLONDES

EUROPEANS

EURO-

PEAN

BLONDES

BLONDE

GERMANS

GERMAN

BAVARIANS

BAVARIAN

inherited

BG2-17

BORO
2.2 Class object level patterns

Constructing Signs for Business Objects’ Patterns

chy as far as they will go and the overlapping connections as far down the hierar-

chy as they will go. This compacts and increases the functionality of the model.

2.2.6 Known and unknown distinct and overlapping patterns

We often do not know all the members of a class. So we cannot always say

whether a group of classes is distinct or overlapping and sign this in the model.

This lack of information is not necessarily a problem. We only need to know the rel-

evant distinct or overlapping patterns. Working out every pattern, relevant or

otherwise, would be a waste of time.

However, when we want to model a group of classes as overlapping, it helps to

know at least one common (overlapped) member. There is, in principle, nothing

wrong with signing them as overlapping when we do not know a common member.

However, this is not a good policy. Finding a common member is a sure way of con-

firming that the classes do indeed overlap. Even if we are reasonably sure that

they do, it makes sense—as a safety check—to follow a policy of confirming our

intuitions. We can do this simply and effectively by finding a common member. Fig-

ure BG2–19 illustrates this process of confirmation. If we cannot find a common

member, this should make us suspect that the classes do not, in fact, overlap.

Figure BG2–19
Constructing

confirmation of
overlapping

Things are not so easy for distinct patterns. No matter how many distinct

instances two class signs may have, this does not prove that their classes are

distinct. There may be an unknown object that is a member of both classes. So a

group of classes cannot be logically proven to be distinct in the same way as they

STEP ONE STEP TWO

BLONDESBLONDES GERMANSGERMANS

HELGAHELGA ADOLFADOLF SVENSVEN

Sign Classes as
Overlapping

Sign a Common
Member

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

BLONDESBLONDES GERMANSGERMANS

BG2-18

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

can be proven to be overlapping. This means we need to exercise caution before

signing classes as distinct in the model.

2.2.7 The distinct and overlapping class pattern objects

The strong reference principle requires that, as we have signed distinct and over-

lapping class patterns, the signs refer to objects. These are constructed in the

same way as their individual object cousins. They are the classes of the distinct

(or overlapping) classes. We can illustrate this with the distinct birds and bees

classes from Figure BG2–13. Its distinct sign refers to the class {birds, bees},

which has the birds and bees classes as its only members. Furthermore, this

class is a member of the distinct class. This is shown in Figure BG2–20, which also

shows an example of the pattern for the construction of the overlapping class.

Figure BG2–20
Class examples
of overlapping
and distinct
pattern objects

2.2.8 Partitioning patterns for distinct classes

Like individual objects, where a distinct pattern is often part of a larger individual

partition pattern, distinct class patterns are often part of a larger class parti-

tion pattern. A type of partitioning class pattern has been a natural way of see-

ing since well before the emergence of the substance paradigm and its secondary

GERMANSBLONDES

REAL WORLD

OVERLAPPING PATTERN OBJECT

OBJECT SCHEMA

OVERLAPPING
PATTERN
OBJECT

s
u

p
e
r
fl

o
u

s
 s

ig
n

s

sign for
overlapping

class
object

refers to

refers to

OVERLAPPING
BLONDES/
GERMANS
OBJECT

DISTINCT
PATTERN OBJECT

GERMANS BEES

BLONDES BIRDS

OVERLAPPING DISTINCT

BG2-19

BORO
2.2 Class object level patterns

Constructing Signs for Business Objects’ Patterns

substance hierarchy. For example, when we think of the class humans, we almost

instinctively start partitioning it, maybe by gender. Then, even though it contra-

venes the substance paradigm’s single classification restriction, some of us also

start thinking of alternative ways of partitioning, for example into adults and

children. In the class partition pattern, the partitioning class is divided into dis-

tinct partitioned sub-classes. As shown in Figure BG2–21, the notation is similar

to the individual object partition sign—with the component super–sub-class

sign replacing the whole–part sign.

Figure BG2–21
Partitioned
classes

Often, the partition pattern does not partition a class completely, partitioning

only some of its members into distinct classes. This is a partial or incomplete

partition and is signed by adding an incomplete partition component sign to the

composite partition sign. As shown in Figure BG2–22, this is a small flat rectangle

that is put between the super–sub-class sign and the partition box.

CHILDREN

CHILD

HUMANS

HUMAN

ADULT

ADULTSMALE
HUMANS

FEMALE
HUMANS

CHILDREN

CHILD

HUMANS

HUMAN

ADULT

ADULTS

Composite
Super-Sub
Partition

Sign

Superfluous
Distinct

SignsMALE
HUMANS

FEMALE
HUMANS

BG2-20

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–22
Incompletely
partitioned
classes

Partition

pattern

inheritance

As the example in Figure BG2–23 shows, partition patterns (like distinct pat-

terns) are inherited down the super–sub-class hierarchy. The partition into dis-

tinct male and female animals classes is inherited down the super–sub-class

hierarchy to the distinct male and female humans classes partition. (You will

notice that the inherited partition is the more general male/female partition

from Figure BG2–21 rather than the human specific men/women partition from Fig-

ure BG2–22.)

MEN

MAN

MEN

MAN

WOMEN

WOMAN

WOMEN

WOMAN

CHILDREN

CHILD

COMPLETE
PARTITION

INCOMPLETE
PARTITION

HUMANS

HUMAN

HUMANS

HUMANComposite
Incomplete
Partition
Sign

Incomplete
Partition

Component
Sign

BG2-21

BORO
2.2 Class object level patterns

Constructing Signs for Business Objects’ Patterns

Figure BG2–23
Partition
inheritance

As with individual level partitions, this has implications for how we model class

partitions. It is useful to push them as far up the super–sub-class hierarchy as

they will go, increasing the number of classes that can inherit the pattern. This

compacts and increases the functionality of the model.

2.2.9 Intersection patterns for overlapping classes

Sometimes we want to work with a class constructed from objects that are

members of the overlap of a group of classes. This is an intersection pattern,

which goes one step further than the overlapping pattern and constructs the

class of the overlapped members. The intersection pattern only applies to over-

lapping classes, it cannot apply to the other two types of class patterns: dis-

tinct and sub-class. Distinct classes have no members in common and so have no

use for the intersection pattern. Sub-classes have all their members in common

with their super-class, and so the intersection pattern would not produce a new

class.

We can see how the intersection pattern works with an example. Assume we are

targeting a group of companies for a sales campaign and we are going to select

the group from a comprehensive list. The list identifies whether companies are

large and whether their headquarters are in the north or south of the country. If

MALE
HUMANS

MALE
HUMANS

FEMALE
HUMANS

FEMALE
HUMANS

ANIMALS

ANIMAL

HUMANS

HUMAN

inherited
partition

BG2-22

2 Patterns for the connections between extensions

Constructing Signs for Business Objects’ Patterns

BORO

we target large companies in the north (in other words, the class of companies

whose members belong to both the large companies class and the northern com-

panies class) then we need the intersection pattern shown in Figure BG2–24. This

illustrates the intersection sign, which is an enhanced version of the overlap sign.

Figure BG2–24
Intersected
classes

The example in Figure BG2–24 also confirms that only overlapping classes can be

intersected. It is pointless intersecting the classes northern companies and

southern companies because they are distinct (as they are part of a partition).

So we know in advance that the intersecting class would be empty. The inter-

sected classes in the intersection pattern must be overlapping so that the

intersecting class has members.

The intersecting class, large northern companies, is logically dependant on the

intersected classes, large companies and northern companies. The logical

dependency is shown by a black semi-circle sign at the end of the intersection

sign (seen in Figure BG2–24. The class is derived by the logical dependency. This is

shown by the derived sign, a small grey triangle in the bottom left corner of the

class sign. Again this is visible in Figure BG2–24. This derived component sign

becomes an integral part of the composite sign for the class. It needs to be

because the class sign can appear in other schemas without the intersection

sign and so the logical dependency sign. Then the derived sign reminds us of the

logical dependency.

SOUTHERN
COMPANIES

COMPANIES

COMPANY

IN
F
O

R
M

A
T

IO
N

 M
O

D
E
L

D
O

M
A

IN

Composite
Intersection
Sign

Intersection
Component

Sign
LARGE

COMPANIES
r
e
fe

r
s
 t

o

LARGE
COMPANIES

NORTHERN
COMPANIES

NOTHERN
COMPANIES

r
e
fe

r
s
 t

o

LARGE
NORTHERN
COMPANIES

LARGE
NORTHERN
COMPANIES

BG2-23

BORO
2.2 Class object level patterns

Constructing Signs for Business Objects’ Patterns

2.2.10 Fusion patterns for overlapping classes

Sometimes every member of a group of overlapping classes has an interesting

characteristic and this is captured by a class that pools all the members of the

group of classes. For example, at some future date it may be decided to make the

citizens of France and Germany citizens of a new Western Alliance state. The

class Western Alliance citizens is the pooling of the members of the classes

French citizens and German citizens. This pattern is called a fusion and is mod-

elled using a fusion sign (shown in Figure BG2–25). You will notice that the classes

French citizens and German citizens overlap; it is possible to have dual citizen-

ship. If they did not (the classes were distinct), this would be a partition pattern.

The fused class, Western Alliance citizens, is logically dependant on the classes

French citizens and German citizens. This is shown in the same way as for inter-

sected classes, with a logical dependency and a derived sign.

Figure BG2–25
Fusion sign

2.2.11 A close-knit family of extension patterns

This examination of the patterns of connections between extensions has

revealed a close-knit family of patterns. We have seen how patterns at the indi-

vidual object level repeat themselves at the class level. How patterns are inher-

WESTERN
ALLIANCE
CITIZENS

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

Composite
Fusion
Sign

Fusion
Component

Sign

WESTERN
ALLIANCE
CITIZENS

GERMAN
CITIZENS

GERMAN
CITIZENS

r
e
fe

r
s
 t

o

FRENCH
CITIZENS

FRENCH
CITIZENS

r
e
fe

r
s
 t

o

BG2-24

3 State hierarchy patterns

Constructing Signs for Business Objects’ Patterns

BORO

ited up and down the super–sub-class and whole–part hierarchies. How we can

and should generalise the connections along their inheritance hierarchies to com-

pact and increase the functionality of the model. The examples have given us a feel

for how these patterns work with one another. As we get more experience of busi-

ness object modelling, they will become second nature.

3 State hierarchy patterns

In the working paper OP4—Business Object Ontology Paradigm we examined how

object semantics explained substance’s states as physical bodies that are tem-

poral parts of other physical bodies. Here, we look at the basic object syntax for

states. We look at the sign for a state and how to model the following state pat-

terns:

• State–sub-class hierarchy patterns,

• State–sub-state hierarchy patterns,

• Distinct state patterns,

• Partitioned state patterns, and

• Overlapping state patterns.

These are all spatio-temporal patterns. In the next section, we look at temporal

(time ordered) patterns.

3.1 The state–of sign

A state is a physical body that is a temporal part of another physical body. This

link between the state and the physical body is a particular type of whole–part

tuple. Consider the lepidopter example from OP4—Business Object Ontology Para-

digm (illustrated in OP4’sFigure OP4–14), where caterpillar #2 is a state of lepi-

dopter #1. As Figure BG2–26 shows, the state–of tuple is a couple <lepidopter #1,

caterpillar #2> belonging to the temporal–whole–part tuples class. (This is the

states tuples class; all states are, by definition, temporal parts of physical bod-

BG2-25

BORO
3.2 State–sub-state hierarchy patterns

Constructing Signs for Business Objects’ Patterns

ies.) The temporal–whole–part tuples class is, in turn, a sub-class of the whole–

part tuples class.

As the couple belongs (distantly) to the whole–part class, we sign it with a

whole–part sign. To reflect the fact that caterpillar #2 is a temporal part (state)

of lepidopter #1, the composite state–of sign has a state-of or temporal compo-

nent sign. In Figure BG2–26, the whole–part and temporal–whole–part tuples

classes are drawn. However, these are normally left out of the schemas because

they are superfluous, implied by the state–of or temporal–whole–part sign.

Figure BG2–26
Temporal–
whole–part or
‘state–of’ sign

3.2 State–sub-state hierarchy patterns

We saw in OP4—Business Object Ontology Paradigm that states can have states

and this leads to a state–sub-state hierarchy pattern. In the example illustrated

in OP4’s Figure OP4–17 and Figure OP4–18, caterpillars had early and late stage

sub-states, where a substate is defined as a temporal part of a temporal part.

So, as shown in Figure BG2–27, the pattern is signed using the state–of sign. You

should notice that this pattern is at the member level, with the state tuples

signs connecting the classes’ member signs.

CATERPILLAR
#2

LEPIDOPTER
#1

State-Of or
Temporal-

Whole-Part
Component Sign

Composite State-Of
or Temporal-Whole-
Part Tuple
Sign

superflous signs

TEMPORAL-
WHOLE-PART

TUPLES
WHOLE-PART

TUPLES

BG2-26

3 State hierarchy patterns

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–27
State–sub-
state hierarchy
pattern

3.3 State–sub-class hierarchy patterns

OP4—Business Object Ontology Paradigm also shows us that states are collected

into state classes that can have state–sub-classes. This state–sub-class pat-

tern is just a super–sub-class pattern, where the classes are state classes. Fig-

ure BG2–28 shows this using the example illustrated in OP4’s Figure OP4–19 and

Figure OP4–20, where the caterpillars (state) class has red and green (state)

sub-classes.

LATE

STAGE

CATER-

PILLARS

EARLY

STAGE

CATER-

PILLARS

CATER-

PILLARS

LEPI-

DOPTER

LEPIDOPTERA

BG2-27

BORO
3.4 Other extension-based state patterns

Constructing Signs for Business Objects’ Patterns

Figure BG2–28
State–sub-
class hierarchy
pattern

3.4 Other extension-based state patterns

States, as physical bodies, fall into the same extension-based patterns as other

physical bodies. For instance, they have the distinct, overlapping and partitioned

patterns we examined in the beginning of this paper. We illustrate this using the

lepidopter example again. Its states are distinct and also completely partition

the lepidopter object. Figure BG2–29 models these two patterns. You can see

that the partition is modelled connecting the classes’ members icons, this is

because it operates at the member level.

GREEN
CATER-
PILLARS

RED
CATER-
PILLARS

LEPIDOPTERA

LEPI-
DOPTER

CATER-
PILLARS

T

TEMPORAL-WHOLE-PART
TUPLES

State-
Sub-Class

Tuple

s
u

p
e
r
flu

o
u

s
s
ig

n
s

BG2-28

4 Time ordered temporal patterns

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–29
Distinct and
partitioned
states

In Figure BG2–30, we have used the overlapping caterpillar and infected lepidopter

states from OP4’s Figure OP4–21 and Figure OP4–22 to illustrate how we sign an

overlapping state.

Figure BG2–30
Overlapping
states

4 Time ordered temporal patterns

In OP4—Business Object Ontology Paradigm, we examined how object semantics

explains changes using these two types of object:

• States, and

CATERPILLARS

CATER-

PILLAR

PUPAE

PUPA

BUTTERFLIES

BUTTER-

FLY

DISTINCT

PARTITIONED

CATERPILLARS

CATER-

PILLAR

LEPIDOPTERA

LEPI-

DOPTER

PUPAE

PUPA

BUTTERFLIES

BUTTER-

FLY

LEPIDOPTER

#1

INFECTED

LEPIDOPTER

STATE #7

CATERPILLAR

STATE #2

BG2-29

BORO
4.1 State changes

Constructing Signs for Business Objects’ Patterns

• Events.

We now look at the object syntax for their time ordered temporal patterns.

4.1 State changes

In object semantics, states are objects and often ordered in time. This ordering

can take a number of patterns; we only look at this sample here:

• Simple state ‘change’ patterns,

• Sequence of states pattern, and

• Alternating states pattern.

We then investigate how the state life history of an object is constructed from a

states’ time ordering patterns.

4.1.1 A simple state ‘change’ pattern

The simplest state change involves a ‘change’ from one state to another—for

instance, a change from an ill state into a well state. The states are ordered in

time – one after the other. To describe this pattern, we construct a tuple of the

two states and sign its order with a component time ordering arrow sign (shown

in Figure BG2–31).

Figure BG2–31
Sign for time
ordering

4.1.2 A time sequence of states pattern

Often the states of an object fall into a time sequence pattern. We can describe

this pattern at an individual object level or generalise it to a class level—as in the

chairman and lepidopter examples below.

Composite Time
Ordering Sign

Time Ordering Arrow
Component Sign

ILL STATE
#11

WELL STATE
#12

BG2-30

4 Time ordered temporal patterns

Constructing Signs for Business Objects’ Patterns

BORO

Individual

object level

sequence

The chairman thought experiment from OP4—Business Object Ontology Paradigm

(illustrated in its Figure OP4–29) provides a good example of a time sequence pat-

tern of individual states. Each new resignation and appointment leads to a new

chairman state. If we extend the pattern in the thought experiment we get a

sequence, over time, of chairman states—all states of the chairman object. In

this case, the sequence of states has a temporal gap. This is modelled with the

time ‘gap’ ordering arrow component sign shown in Figure BG2–32.

Figure BG2–32
Individual object
level sequence
of states

Class level

sequence

The ubiquitous lepidopter provides us with an example of a class level sequence

pattern. Caterpillars develop into pupae that develop into butterflies. It is the

members of the classes that develop, not the classes themselves, so the order-

ing sign is linked to the class members’ signs (shown in Figure BG2–33), not the

class signs.

Figure BG2–33
Class level
sequence of
states

4.1.3 Alternating state patterns

States also fall into an alternating pattern, as shown in the well and ill states

example inOP4—Business Object Ontology Paradigm (Figure OP4–28). We model this

using the sign for time ordering (shown in Figure BG2–34). You should notice that,

in this case, the model shows both the individual object and the class level order-

ing.

Composite Time Gap
Ordering Sign

Time Gap Ordering
Arrow Component Sign

MS BROWN
CHAIRMAN
STATE #210

MR SMITH
CHAIRMAN
STATE #64

MR JONES
CHAIRMAN
STATE #68

LEPIDOPTERA

LEPI-
DOPTER

PUPAE

PUPA

T

Composite
Next State
Tuples Class
Sign

CATER-
PILLARS

BUTTER-
FLIES

BG2-31

BORO
4.1 State changes

Constructing Signs for Business Objects’ Patterns

Figure BG2–34
Alternating
state patterns

4.1.4 An object’s state life history

These signs for states' time orderings allow us to tell an individual object’s state

life history (or indeed, a class of objects’ state life histories). Consider the lepi-

doptera example again. To determine its state life history we first need to find all

the possible patterns for its individual states. Figure BG2–35 provides a simpli-

fied version of these in the form of state life histories for three individual lepidop-

tera—each one dying at a different stage of development. Notice the beginning

and ending signs. These are, as you can see, based on the space-time map icons.

Figure BG2–35
Three individual
lepidopter
state life
histories

ILL STATES

ILL

STATE

HEALTH

STATES

WELL STATES

WELL

STATE

PERSONS

PERSON

ILL

STATE #11

ILL

STATE #13

WELL

STATE #12

WELL

STATE #14

CATERPILLAR
#201

CATERPILLAR
#202

PUPA
#203

CATERPILLAR
#2

PUPA
#3

BUTTERFLY
#4

Beginning
Icon

Ending
Icon

BG2-32

4 Time ordered temporal patterns

Constructing Signs for Business Objects’ Patterns

BORO

We generalise these individual level patterns into a class level history; the result

is Figure BG2–36. Notice that as the state life histories are of the individual

states of the physical object, the time ordering pattern is between the members

and not the classes. This is a very simple example. Normally, an object would have

a number of different state partitions, across which states would overlap (illus-

trated inFigure OP4–21 and Figure OP4–22).

Figure BG2–36
A class level
lepidoptera
state life
history

People familiar with traditional modelling may recognise this as object syntax’s

version of the entity paradigm’s life history diagrams. Getting a picture of some-

thing’s life history is an extremely useful part of business modelling. However, the

entity life history has to work within the confines of the entity paradigm, which

typically constrains it to a tree-like structure. Using the more powerful and

sophisticated object semantics enables us to construct a much more accurate,

and so useful, picture of a life history.

4.2 Event cause and effect time orderings

As well as a life history perspective on objects, object syntax offers a cause and

effect perspective centred on events. In OP4—Business Object Ontology Paradigm

LEPIDOPTERA

BUTTERFLIES

CATERPILLARS

CATER-

PILLAR

&
metamor-
phoses

&
metamor-
phoses

&
dies

&
dies

L
E
P

ID
O

P
T

E
R

IS
 B

O
R

N

PUPAE

PUPA

LEPIDOPTER
DIES

PUPA
METAMORPHOSES

BUTTERFLY
METAMORPHOSES

BG2-33

BORO
4.3 Time ordering tuple objects

Constructing Signs for Business Objects’ Patterns

we discussed how Aristotle analysed understanding into the following four types

of cause:

• Efficient cause,

• Material cause,

• Formal cause, and

• Final cause.

We now look at how these are modelled with time ordering signs. We do this by

example. We model, using object syntax, the ‘sculptor carving a statue’ example

illustrated inFigure OP4–37. The result is Figure BG2–37. We use a new sign (the

pre-condition sign) for the efficient and material causes because the causes are

not ordered before or after the event, but around it. The efficient and material

causes are differentiated because the material cause has a temporal–whole–

part connection with the formal cause.

Figure BG2–37
Object syntax’s
event
perspective

The life history and event perspectives complement one another. The life history

fits the states into a pattern. The event perspective then explains that pattern

by mapping what ‘causes’ the events that change the states.

4.3 Time ordering tuple objects

We have looked at various time ordering (and pre-condition) signs. We now exam-

ine, in deference to the strong reference principle, the objects that these signs

refer to. They are tuples that belong to the appropriate pattern’s tuples class.

At the individual level, they are couple objects as indicated by the two place links

BLOCK OF
MARBLE

#102

SCULPTOR
#101

STATUE
#103

STATUE
SALE EVENT

#105

CARVING
EVENT
#104

Pre-
Condition
Tuple
Composite
Sign

MATERIAL
CAUSE

EFFICIENT
CAUSE

FORMAL
CAUSE

FINAL CAUSE

BG2-34

5 Cardinality patterns for tuples classes

Constructing Signs for Business Objects’ Patterns

BORO

to the diamond tuple component sign. These are members of one or another of

the time ordering or pre-condition pattern’s tuples classes (illustrated in Figure

BG2–38).

Figure BG2–38
Time ordering
and pre-
condition tuples
classes

5 Cardinality patterns for tuples classes

We now move from time ordering tuples to a particular aspect of tuples classes.

We look at a group of useful modelling patterns—cardinalities. Traditional infor-

mation modelling uses cardinality patterns for its relational attributes and we

re-engineer a version of the patterns here. A few differences arise because the

tuples class and the occupied class places are objects in their own right in object

semantics. This is a change from traditional modelling, where cardinalities are

implicit parts of relational attributes.

In many cases, it is useful to describe the cardinality patterns of a tuples class,

but this notation does not insist on it. A number of notations are used for

describing cardinality in traditional information modelling; most of which can be

TUPLES

TIME
ORDERING

TUPLES

TEMPORAL
GAP

TUPLES

TEMPORALLY
CONTINUOUS

TUPLES

PRE-
CONDITION

TUPLES

BG2-35

BORO
5.1 Types of cardinality pattern

Constructing Signs for Business Objects’ Patterns

adapted to object semantics. I prefer to use the simple one described below, but

it does not really matter which one is used. I suggest that you use the notation

you feel most comfortable with, though remember it will probably need some

amendments to cope with object semantics.

5.1 Types of cardinality pattern

BG1— Constructing Signs for Business Objects looked at the signs for tuples

classes and their occupied class places. These occupied class places are the

basis for the cardinality patterns. Cardinality is a pattern that, in object syntax,

applies to occupied class place objects. When a cardinality pattern is signed,

both an upper and a lower bound are specified. There are two levels for the lower

bound—optional or one. There are also two levels for the upper bound—one or

multiple. These upper and lower bound levels can be combined in four ways to pro-

duce four different cardinality patterns for the occupied class place:

• Optional-to-one pattern,

• One-to-one pattern,

• Optional-to-multiple pattern, and

• One-to-multiple pattern.

We now look at each of these in more detail.

5.1.1 Optional-to-one cardinality pattern

Consider Figure BG2–39, which models the person-born-in-Britain tuples class.

What is the cardinality pattern of the class place occupied by the class persons?

I have found that it is important when determining cardinality to confirm one’s

intuitions with specific instances. I go through this confirmation process step by

step in this example.

Prince Philip and Queen Elizabeth are both members of the class persons. Prince

Philip is a person and was not born in Britain. So it must be optional for a person

to be born in Britain. Or, in object-speak—it must be optional for members of the

BG2-36

5 Cardinality patterns for tuples classes

Constructing Signs for Business Objects’ Patterns

BORO

class persons to occupy the person place in a couple that is a member of the per-

son-born-in-Britain tuples class. So the lower bound for the occupied class place

is zero. This is signed in a similar way to traditional modelling with an ‘0’ on the line

between the occupied class place and the tuples class sign.

Queen Elizabeth is a person and was born in Britain. So a person can be born in

Britain (a member of the class persons can occupy the person place in a couple

that is a member of the person-born-in-Britain tuples class). It is safe to assume

that a person cannot be born more than once, in Britain or anywhere else. So the

maximum number of times a person can appear in the person place of a person-

born-in-Britain couple is once. This means the upper bound for the occupied class

place is one, which is noted by a ‘1’ sign on the class place link. By convention we

draw the upper bound sign closer to the tuples class sign than the lower bound

sign. Both these upper and lower bound signs are shown in Figure BG2–39.

Figure BG2–39
Optional-to-one
cardinality
pattern

5.1.2 One-to-one cardinality pattern

If we now model the son–father tuples class with its place classes son and father

then we get the schema shown in Figure BG2–40. A son always has one and only

one biological father; so, every son appears once and only once in the son place of a

father–son couple. This means the upper and lower bounds are both one. So two ‘1’

signs are put by the occupied class place sign, next to the tuples class sign.

BRITAIN

QUEEN
ELIZABETH

BRITAIN
PRINCE
PHILIP

QUEEN
ELIZABETH

'Optional'
Lower Bound Sign

'One' Upper
Bound Sign

PERSON-BORN-
IN-BRITAIN

TUPLES

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

r
e
fe

r
s
 t

o

PERSON-BORN-
IN-BRITAIN TUPLES

r
e
fe

r
s
 t

o

PERSONS

PERSONS
r
e
fe

r
s
 t

o

BG2-37

BORO
5.1 Types of cardinality pattern

Constructing Signs for Business Objects’ Patterns

Figure BG2–40
One-to-one
cardinality
pattern

5.1.3 Optional-to-multiple and one-to-multiple

cardinality patterns

Now consider the model in Figure BG2–41, this shows the employee–project tuples

class originally illustrated in Figure OP1–24 and Figure OP1–25. An employee will

sometimes work on a number of projects. This means the upper bound for the

occupied class place must be greater than one. For this, we use the multiple sign.

As you can see, it looks like a crow’s foot. Some employees, such as secretarial

staff, will never work on a project. So the occupied class place has a lower bound

of zero. We use the same ‘0’ sign that we used in Figure 10.40 for this. All

projects have one or more employees working on them. So the lower bound of the

occupied class place link is one and the upper bound is multiple. These optional-to-

multiple and one-to-multiple cardinalities are is signed in Figure BG2–41.

PRINCE
WILLIAM

PRINCE
CHARLES

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

SONS SON-FATHER
TUPLES

FATHERS

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o
FATHERSSONS

'One' Upper
Bound Sign

'One' Lower
Bound Sign SON-FATHER

TUPLES

BG2-38

5 Cardinality patterns for tuples classes

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–41
Figure 10.41
Optional- and
one-to-multiple
cardinality
patterns

5.1.4 Cardinality pattern signs

These examples cover the only four possible signs for the cardinality of an occu-

pied class place. A full list is given in Figure BG2–42. If we are going to sign the car-

dinality of an occupied class place then we will use one of them. Remember,

however, that unlike some traditional modelling notations, each occupied place of

a tuples class can be given a cardinality pattern. So a tuples class can have as

many cardinality patterns as it has occupied class places.

JOHN

ANNE

SUE SUE
PROJECT

#1

SUE
PROJECT

#2

JOHN PROJECT
#2

PROJECT
#1

PROJECT
#2

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

EMPLOYEES EMPLOYEE-WORKING-
ON-PROJECT TUPLES

PROJECTS

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o

r
e
fe

r
s
 t

o
PROJECTSEMPLOYEES 'Multiple'

Upper Bound
Signs

'Optional' Lower
Bound Sign

'One' Lower
Bound Sign

EMPLOYEE-WORKING-
ON-PROJECT

TUPLES

BG2-39

BORO
5.2 Cardinality patterns as objects

Constructing Signs for Business Objects’ Patterns

Figure BG2–42
The four
composite
cardinality
pattern signs

5.2 Cardinality patterns as objects

Cardinality signs, like the distinct and overlapping signs, refer to class objects.

But, which class objects? If we analyse the model carefully we can see the mem-

bers of the cardinality classes—occupied class place objects.

5.2.1 Occupied class places as objects

The working paper BG1— Constructing Signs for Business Objects looked at the

signs for occupied class places (see Figure BG1–25 and Figure BG2–26). We now

work out what these signs refer to. We start with the signs for individual tuples

and work up to the occupied class place signs.

The sign for individual tuples, such as <Prince Charles, Prince William>, is a black

diamond. This component has a number of lines, called (tuple) place component

signs joining the diamond to the signs for the objects that make up the tuple. For

example, in Figure BG2–43, a component place sign joins the black diamond tuple

sign to the Prince Charles sign.

Optional

Optional-To-One

Optional-to-Multiple

One-To-One

One-To-Multiple

Multiple

Composite Cardinality Signs

Component Cardinality Signs

CLASS

MEMBER

CLASS

MEMBER

One
CLASS

MEMBER

BG2-40

5 Cardinality patterns for tuples classes

Constructing Signs for Business Objects’ Patterns

BORO

Figure BG2–43
What occupied
class places
signs refer to

The tuples class signs have a component that looks similar. This is the (tuples)

class place sign. Like the place component sign, it is a line. Unlike it, the line does

not have to join the tuples class sign to another sign. For example, the class place

sign on the right of the father-child tuples class in Figure BG2–43 is not joined to

anything. The class place sign can join the tuples class sign to another sign—as

shown by the class place sign joining the fathers class sign to the father-child

tuples class in Figure 10.43. When this happens, the class place is said to be

occupied and a black diamond (the tuple sign) is added to the line.

What object does this occupied class place sign refer to? Despite the similarity

of the signs, it cannot reflect a simple construction relationship as the tuple’s

place sign does. The connection between the father-child tuples and fathers

classes is not one of a tuple constructed from an object. Instead, it is a tuple,

<father-child tuples, fathers> (illustrated in Figure BG2–43). That is why the

occupied class place component sign is a black diamond, the sign for a tuple. In

general, occupied class place signs refer to a couple with the format <tuples

class, place class>.

FATHERS

 PRINCE
CHARLES

r
e
fe

r
s
 t

o

PRINCE
CHARLES

PRINCE
WILLIAM

Father-Child Tuples
Occupied Class Place

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

FATHER-CHILD
TUPLES

FATHERS
FATHER-CHILD

TUPLES

BG2-41

BORO
5.3 Inheriting cardinality patterns

Constructing Signs for Business Objects’ Patterns

5.2.2 Cardinality classes with occupied class places as members

These occupied class places are the members of cardinality classes (shown in Fig-

ure BG2–44). For example, the one-to-one cardinality sign refers to the one-to-

one bound cardinalities tuples class. This has as members all occupied class

places with a one-to-one cardinality, including the one shown in the figure.

Figure BG2–44
Underlying
cardinality
model

The figure also illustrates how, once the composite cardinalities are seen as

classes, they can be generalised into their elements. The one-to-one cardinality

class can be generalised as a sub-class of the ‘one lower bound cardinalities’ and

the ‘one upper bound cardinalities’ tuples classes. We can also see quite clearly

how much easier it is to use the cardinality signs than the more long-winded cou-

ple and tuples class–member signs.

5.3 Inheriting cardinality patterns

There are constraint patterns for the inheritance of cardinality patterns up and

down the super–sub-class hierarchy. They are easy to work out; so try doing it for

yourself.

CLASS

MEMBER

LOWER
BOUND

CARDINALITIES

CLASS

MEMBER

s
u

p
e
r
fl

o
u

s
 s

ig
n

s

CLASS

MEMBER

UPPER
BOUND

CARDINALITIES

'OPTIONAL TO ONE'
BOUND

CARDINALITIES

'ONE TO MULTIPLE'
BOUND

CARDINALITIES

'OPTIONAL'
LOWER BOUND
CARDINALITIES

'ONE'
LOWER BOUND
CARDINALITIES

'ONE TO ONE'
BOUND

CARDINALITIES

'ONE'
UPPER BOUND
CARDINALITIES

'OPTIONAL TO MULTIPLE'
BOUND

CARDINALITIES

'MULTIPLE'
UPPER BOUND
CARDINALITIES

BG2-42

6 A pattern for compacting classes

Constructing Signs for Business Objects’ Patterns

BORO

6 A pattern for compacting classes

So far, in this paper, we have looked at how object syntax helps us model objects.

Now, we turn our attention to a pattern that helps us generalise classes and so

compact the model. This is the pattern of tuples classes defining their place

classes.

Once we identify the pattern, we generalise the place classes up the super–sub-

class hierarchy. We can then eliminate the original, less general, place classes.

This compacts the model without compromising its information content. This is a

good illustration of one way in which compacting works and how we handle it

within object syntax. We shall re-use this compacting pattern in MW—The BORO

Methodology: Worked Examples.

6.1 Constructing an example of the pattern

To illustrate the compacting, we need an example of the pattern. We get one by

constructing a derived place class from a tuples class. Step one, shown in Figure

BG2–45, is taking the father–child tuples class. At this stage, it has no occupied

class places. Step two is identifying in each of the member tuples, the object

that occupies the father place. Step three is collecting all these objects into a

class. This gives us a fathers class that occupies one of the father–child tuples

class places.

BG2-43

BORO
6.2 Using the pattern to compact the model

Constructing Signs for Business Objects’ Patterns

Figure BG2–45
Constructing
the logically
dependent place
class fathers

The class fathers is defined as those persons who have a father–child tuple link-

ing them to a child—so it is logically dependent on the father-child tuples class.

This makes it derived. This is modelled in the usual way; with logical dependency

and derived signs (shown in Figure BG2–45).

We will spot this pattern frequently if we keep asking whether there is a logical

dependency between a tuples class and its place classes. Until now, we have

tended to assume that they are logically independent. In this father–child tuples

case, and many other cases, if we had asked ourselves the question, we would

have realised that there is a logical dependency.

6.2 Using the pattern to compact the model

We now have an example of the pattern of tuples classes defining place classes.

So we can illustrate the compacting. We do this in the three steps shown in Figure

BG2–46. In the first step, we generalise the fathers class (the occupied class

place) up the super–sub-class hierarchy to the persons class. In the second step,

PRINCE

CHARLES

PRINCE

CHARLES

PRINCE

HARRY

PRINCE

HARRY

PRINCE

CHARLES

PRINCE

CHARLES

PRINCE

PHILIP

PRINCE

PHILIP

PRINCE

CHARLES

PRINCE

HARRY

PRINCE

CHARLES

PRINCE

HARRY

PRINCE

CHARLES

PRINCE

WILLIAM

PRINCE

CHARLES

PRINCE

WILLIAM

PRINCE

PHILIP

PRINCE

CHARLES

PRINCE

PHILIP

PRINCE

CHARLES

FATHERS

FATHER

FATHER-SON

TUPLES

FATHER-SON

TUPLES

S
T

E
P

 O
N

E
S
T

E
P

 T
W

O
S
T

E
P

 T
H

R
E
E

FATHER-SON TUPLES

FATHER-SON TUPLES

FATHER

PRINCE

CHARLES

PRINCE

HARRY

PRINCE

CHARLES

PRINCE

WILLIAM

PRINCE

PHILIP

PRINCE

CHARLES

FATHER-SON

TUPLESFATHER-SON TUPLES

BG2-44

7 Summary

Constructing Signs for Business Objects’ Patterns

BORO

we generalise the ‘is a father of’ occupied class place from the father class to the

persons class. At this stage, the fathers class no longer has a role to play; so, we

classify it as redundant. The grey derived component sign in step one becomes a

black redundant component sign. In the third and final step, we eliminate the now

redundant fathers class from the model.

Figure BG2–46
Making a
derived place
class redundant

Often, when we are growing a business model, we construct classes that are logi-

cally dependent on tuples classes. These normally serve a purpose during the

early stages. But, in most cases, they are redundant and so do not need to be

implemented. As the model matures, we compact it by eliminating the redundant

classes.

In this example of the compacting process, we eliminated the fathers class. How-

ever, it is sometimes useful to keep a record of redundant classes. Then, we do

not eliminate the class but leave it in the model flagged as redundant. It then

occupies a kind of limbo, kept in the model for reference purposes only.

7 Summary

Compacting the model is an important part of business modelling, and generalis-

ing a class place’s link up the super–sub-class hierarchy is a useful pattern for

compacting. The other patterns we looked at are also useful when business mod-

elling. We will find ourselves (re-)using most of them. As well as constructing

object models of useful patterns, thispaper has helped us develop a clear idea of

how the object notation captures patterns of business objects, an essential

part of good business object modelling.

FATHERS

FATHER

STEP ONE STEP TWO STEP THREE

PERSONS

PERSON

si a f at her of

FATHERS

FATHER

PERSONS

PERSON

si a f at her of

PERSONS

PERSON

si a f at her of

BG2-45

BORO
6.2 Using the pattern to compact the model

Constructing Signs for Business Objects’ Patterns

MW—The BORO Methodology: Worked Examples provides us with examples of all

these patterns as it demonstratee how the BORO approach re-engineers the

entity formats of existing systems into a reference business object ontology.

BG2-46

7 Summary

Constructing Signs for Business Objects’ Patterns

BORO

BG2-47

BORO
BORO Working Papers - Bibliography

The BORO Working Papers

Volume A

A—The BORO Approach

Book AS

AS—The BORO Approach: Strategy

AS1—An Overview of the Strategy

AS2—Using Objects to Reflect the Business Accurately

AS3—What and How we Re-engineer

AS4—Focusing on the Things in the Business

Volume - O

O—ONTOLOGY Papers

Book - OP

OP—Ontology: Paradigms

OP1—Entity Ontology Paradigm

OP2—Substance Ontology Paradigm

OP3—Logical Ontology Paradigm

OP4—Business Object Ontology Paradigm

Volume - B

B—Business Ontology

Book - BO

BO—Business Ontology: Overview

BO1—Business Ontology - Some Core Concepts

Book - BG

BG—Business Ontology: Graphical Notation

Constructing Signs for Business Objects

BG2-48

BORO Working Papers - Bibliography

BORO

Graphical Notation I

BG1— Constructing Signs for Business Objects

Graphical Notation II

BG2— Constructing Signs for Business Objects’ Patterns

Volume - M

M—The BORO Re-Engineering Methodology

Book - MO

MO—The BORO Re-Engineering Methodology: Overview

MO1—The BORO Approach to Re-Engineering Ontologies

Book - MW

MW—The BORO Methodology: Worked Examples

Worked Example 1

MW1—Re-Engineering Country

Worked Example 2

MW2—Re-Engineering Region

Worked Example 3

MW3— Re-Engineering Bank Address

Worked Example 4

MW4—Re-Engineering Time

Book - MA

MA—The BORO Re-Engineering Methodology: Applications

MA1—Starting a Re-Engineering Project

MA2—Using Business Objects to Re-engineer the Business

Book - MC

MC—The BORO Re-Engineering Methodology: Case Histories

Case History 1

MC1—What is Pump Facility PF101?

BORO

A–I

BG2-49

A

Aristotle
causes explaining an event - - - - - - - - - - BG2-33

attribute
relational - BG2-34

C

cardinality pattern - - - - - - - - BG2-35, BG2-38–BG2-39

class of classes
distinct and overlapping pattern objects -

BG2-7–BG2-8

compacting
classes – pattern for - - - - - - - - - - - - - - - - BG2-42

with patterns of extensions - - BG2-6, BG2-17

D

derived object – sign for - - BG2-11–BG2-12, BG2-22–

BG2-23, BG2-43

distinct and overlapping pattern - BG2-6–BG2-7,

BG2-16–BG2-18

distinct pattern - BG2-3, BG2-13

use caution signing - - - - - - - - - - - - - - - - - - BG2-18

E

efficient cause, See Aristotle, causes
explaining an
event

entity life history diagram - - - - - - - - - - - - - - BG2-32

extension
collection vs. fusion of - - - - - - - - - - - - - - - -BG2-12

patterns for the connections between BG2-1

same extension - BG2-27

F

final cause, See Aristotle, causes explaining an
event

formal cause, See Aristotle, causes explaining
an event

fusion
sign for pattern - - - - - - - - - - - - - - - BG2-12, BG2-23

I

inheritance
cardinality patterns - - - - - - - - - - - - - - - - - BG2-41

distinct and overlapping patterns - - - BG2-5,

BG2-15

partitioning patterns - - - - - - - - - - - - - - - BG2-10

intersection pattern - - - - - - - - - - - - - - BG2-11, BG2-21

INDEX B G 2
B U S I N E S S O N T O L O G Y :

G R A P H I C A L N O T A T I O N - 2

CONSTRUCTING SIGNS FOR
BUSINESS OBJECTS’ PATTERNS

BG2-50

BORO

L–W INDEX

L

logical dependency – sign for - - - - - - BG2-11, BG2-22

M

material cause, See Aristotle, causes explaining
an event

mereology
See also whole-part patterns

O

object syntax BG2-24, BG2-29, BG2-32–BG2-33, BG2-42

occupied class place
as an object - BG2-39

overlapping pattern - - - - - - - - - - - - - - - - BG2-3, BG2-13

confirming -BG2-17

P

partitioning patterns - - - - - BG2-9–BG2-10, BG2-18–

BG2-19, BG2-21

R

redundant patterns
recording - BG2-44

sign for - BG2-44

S

secondary substance
hierarchy - BG2-18

states
hierarchy - BG2-24–BG2-25

life history - BG2-29, BG2-31

overlapping - BG2-28

time ordered patterns - - - - - - - - - - - - - - BG2-29

strong reference principle - - - - - - - - - - - - - - - BG2-18

structure – lattice and tree
life history - BG2-32

sub-part - BG2-2

T

temporal–whole–part - - - - BG2-24–BG2-25, BG2-33

sign for - BG2-25

Time - BG2-33

time ordering - - - - - - BG2-29–BG2-30, BG2-32–BG2-33

tuples class
cardinality patterns for - - - - - - BG2-34–BG2-41

W

whole–part pattern - BG2-7

and overlapping pattern - - - - - - - - - - - - - - BG2-4

	CONTENTS
	1� Introduction
	2� Patterns for the connections between extensions
	2.1 Individual object level patterns
	2.1.1 Distinct pairs of individual objects
	2.1.2 Overlapping pairs of individual objects
	2.1.3 Three main types of connection for pairs of individual objects
	2.1.4 Larger groups of individual objects
	2.1.5 Inheriting distinct and overlapping patterns
	2.1.6 Known and unknown distinct and overlappingpatterns
	2.1.7 The distinct and overlapping individual objects pattern objects
	2.1.8 Partitioning patterns for distinct individual objects
	2.1.9 Inheriting partition patterns
	2.1.10 Intersection pattern for overlapping individual objects
	2.1.11 Fusion pattern for overlapping individual objects

	2.2 Class object level patterns
	2.2.1 Distinct pairs of classes
	2.2.2 Overlapping pairs of classes
	2.2.3 Three main types of connection for pairs of classes
	2.2.4 Larger groups of classes
	2.2.5 Inheriting distinct and overlapping patterns
	2.2.6 Known and unknown distinct and overlapping patterns
	2.2.7 The distinct and overlapping class pattern objects
	2.2.8 Partitioning patterns for distinct classes
	2.2.9 Intersection patterns for overlapping classes
	2.2.10 Fusion patterns for overlapping classes
	2.2.11 A close-knit family of extension patterns

	3� State hierarchy patterns
	3.1 The state–of sign
	3.2 State–sub-state hierarchy patterns
	3.3 State–sub-class hierarchy patterns
	3.4 Other extension-based state patterns

	4� Time ordered temporal patterns
	4.1 State changes
	4.1.1 A simple state ‘change’ pattern
	4.1.2 A time sequence of states pattern
	4.1.3 Alternating state patterns
	4.1.4 An object’s state life history

	4.2 Event cause and effect time orderings
	4.3 Time ordering tuple objects

	5� Cardinality patterns for tuples classes
	5.1 Types of cardinality pattern
	5.1.1 Optional-to-one cardinality pattern
	5.1.2 One-to-one cardinality pattern
	5.1.3 Optional-to-multiple and one-to-multiple cardinality patterns
	5.1.4 Cardinality pattern signs

	5.2 Cardinality patterns as objects
	5.2.1 Occupied class places as objects
	5.2.2 Cardinality classes with occupied class places as members

	5.3 Inheriting cardinality patterns

	6� A pattern for compacting classes
	6.1 Constructing an example of the pattern
	6.2 Using the pattern to compact the model

	7� Summary
	BORO Working Papers - Bibliography
	INDEX

