
Program

i

s

m

B usiness

O bject

R eference

O ntology

p

l

i

f

y

i

n

g

s

e

m

a

n

t

i

c

s

Working
Paper

MA1

METHODOLOGY: APPLICATION - 1

STARTING A RE-ENGINEERING
PROJECT

Issue: Version - 4.01 - 01-July-2001

Copyright Notice © Copyright The BORO Program, 1996-2001.

Notice of Rights All rights reserved. You may view, print or download this document for evaluation

purposes only, provided you also retain all copyright and other proprietary

notices. You may not, however, distribute, modify, transmit, reuse, report, or use

the contents of this Site for public or commercial purposes without the owner’s

written permission.

Note that any product, process or technology described in the contents is not

licensed under this copyright.

For information on getting permission for other uses, please get in touch with

contact@BOROProgram.org.

Notice of liability We believe that we are providing you with quality information, but we make no

claims, promises or guarantees about the accuracy, completeness, or adequacy

of the information contained in this document. Or, more formally:

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

OR NON-INFRINGEMENT.

Contact For queries regarding this document, or the BORO Program in general, please use

the following email address:

contact@BOROProgram.org

MA1-iii

BORO

C O N T E N T S

1 Introduction - MA1-1

2 Take a re-engineering approach -MA1-2

2.1 Salvaging investment in business patterns -MA1-2

2.2 A well-defined scope - MA1-3

3 Establish priorities for the construction of fruitful, general, and so re-usable

patterns - MA1-4

3.1 Establishing priorities for the construction of general, and so re-usable patterns -

MA1-4

3.2 Establishing priorities for the construction of fruitful patterns - - - - - - - - MA1-11

4 Taking care to manage large projects in a generalisation-friendly wayMA1-14

4.1 Widening the scope increases the opportunities for generalisation - - - - - - MA1-15

4.2 Balancing the economies of scope against the problems of size - - - - - - - - - MA1-16

4.3 Chunking the existing system - MA1-17

4.4 The object re-engineering approach to chunking - MA1-18

4.5 The benefits of chunking - MA1-20

4.6 Choosing chunks - MA1-20

4.7 Scheduling the sub-projects with the overall project - - - - - - - - - - - - - - - - - MA1-21

4.8 How to order the individual chunk sub-projects -MA1-22

4.9 Ephemeral documentation - MA1-23

5 Produce a validated understanding of the business - - - - - - - - - - - MA1-24

5.1 Building a validation system- MA1-25

M A 1
M E T H O D O L O G Y : A P P L I C A T I O N - 1

STARTING A RE-ENGINEERING

PROJECT

MA1-iv

EBORO

CONTENTS
MA1

6 Object model the migration of business patterns- - - - - - - - - - - - - MA1-26

6.1 Tracing the migration of application level business patterns - - - - - - - - - - MA1-26

6.2 Modelling the migration of application level business patterns - - - - - - - - -MA1-27

6.3 Modelling the migration of operational level business patterns - - - - - - - - MA1-28

7 Summary - MA1-30

BORO Working Papers - Bibliography - MA1-31

INDEX - MA1-33

MA1-1

BORO

1 Introduction

The BORO O—ONTOLOGY Papers give you an understanding of what business

objects are. The BORO M—The BORO Re-Engineering Methodology Papers show you

how to apply this understanding, describing a systematic method for re-engi-

neering an entity ontology oriented system into a business ontology object

model. But there are also management factors that affect whether a BORO

project to re-engineer an entity ontology oriented systems will be a success.

Inevitably a BORO re-engineering project works in a different way from traditional

system building projects. Its success depends, to quite a large extent, on manag-

ing it in a way that recognises these differences. This paper outlines five manage-

ment tactics that I have found help to make re-engineering projects a success.

These are:

• Taking a re-engineering approach,

• Establishing priorities for constructing fruitful, general and so re-usable
patterns,

• Taking care to manage large projects in a generalisation-friendly way,

• Producing a validated understanding of the business, and

M A 1
M E T H O D O L O G Y :

A P P L I C A T I O N - 1

STARTING A RE-ENGINEERING
PROJECT

MA1-2

2 Take a re-engineering approach

Starting a Re-Engineering Project

BORO

• Object modelling the ‘data’ translation/migration.

2 Take a re-engineering approach

It is important to approach the project as a re-engineering exercise. People some-

times succumb to the temptation of thinking that they can only construct a rad-

ically new system by ‘starting with a blank sheet of paper’. They want to ignore

the existing system completely, so as not to taint the new system with its mis-

takes.

While this tactic may have its merits when working within a paradigm, it is not

re-engineering. In fact, it is the wrong way of shifting to a new and better ontology

paradigm. Apart from the actual difficulty of ‘blanking out’ all knowledge of the

existing system’s patterns, this approach ignores the nature of re-engineering

and evidence of how successful re-engineerings have worked.

2.1 Salvaging investment in business patterns

A core feature of re-engineering is that it salvages the business patterns embed-

ded in the existing system. The great 17th century physicist Isaac Newton used a

striking image for this. He commented in Mathematical Principles (describing his

re-engineered physics) that his work was only possible because ‘he stood on the

shoulders of giants’. A new paradigm may be radically different, but it normally

takes full advantage of the investment in the patterns of the old paradigm. Build-

ing patterns from scratch takes a substantial investment of time and effort and

is just not practical in most situations.

This is why a re-engineering approach actively seeks out and re-engineers the

business patterns in the existing system, salvaging the investment made in

them. We saw how this worked in the worked examples in previous papers. The re-

engineering of the existing system’s entity formats yielded radically different,

useful, general patterns that formed a foundation for the business object mod-

els.

MA1-3

BORO
2.2 A well-defined scope

Starting a Re-Engineering Project

From an economic point of view, the big benefit of the salvage approach is that it

needs much less investment than most other approaches. A systematic re-engi-

neering approach, such as that described in the previous papers, salvages the

existing system’s investment in business patterns. The re-engineering project

effectively starts with this investment in hand.

2.2 A well-defined scope

Basing the project on the re-engineering of the existing system’s entity formats

also provides a simple and effective way of scoping the project. From a manage-

ment control point of view, it is important to have a reasonably clear idea of the

boundaries of the project. The existing system’s business patterns provide just

that. We can define the scope in terms of the entity formats in the existing sys-

tem that hold these patterns (things such as files and records). It is a simple

matter for us to list these, giving the project a clear-cut boundary.

If we did not have a clear-cut boundary, there could be problems. Objects tend to

be closely linked to a number of other objects. Their webby nature means that

they have few, if any, natural boundaries. If we were to keep on analysing them

until we found a natural boundary, we would end up constructing a model of every-

thing.

You may want the project to include in its scope some business patterns that are

not embedded in the existing system (in other words, new requirements). These

can be associated with a related pattern that is embedded, and the patterns re-

engineered together. Time zones (from the re-engineering of temporal patterns in

MW4—Re-Engineering Time) could be considered an example. If they were within

the scope, but not embedded in the existing system, then we could associate

them with either the bank holiday or weekend patterns, which are. The two sets of

patterns could then be re-engineered together.

However, it makes sense to try and schedule the development of specific new

requirements after the re-engineering project. Re-engineering delivers significant

amounts of extra functionality as well as a new way of seeing the business. When

MA1-4

3 Establish priorities for the construction of fruitful, general, and so re-usable pat-
terns

Starting a Re-Engineering Project

BORO

this takes shape, the original ‘new’ requirements may already be satisfied or have

taken on a completely new meaning.

3 Establish priorities for the construction of
fruitful, general, and so re-usable patterns

An important benefit of the object paradigm that it enables us to construct

fruitful, general and so re-usable patterns. However, to get these patterns, we

have to actively exploit the paradigm. This means establishing priorities for the

construction of re-usable patterns.

3.1 Establishing priorities for the construction of general, and so re-
usable patterns

The worked examples in the previous papers illustrated how vital generalising is

to successful business object modelling. The more general a pattern, the more

potentially re-usable it is and so more useful.

3.1.1 Generalisation produces a compact system

Generalisation’s usefulness comes, in part, from its ability to compact. It enables

a large number of base patterns to be re-engineered into a much smaller number

of simpler more general patterns. In essence, it fits more information into a

smaller space (illustrated graphically in Figure MA1–1).

MA1-5

BORO
3.1 Establishing priorities for the construction of general, and so re-usable patterns

Starting a Re-Engineering Project

Figure MA1–1
Generalisation
fits more
information into
a smaller space

Generalisati

on leads to

less costly

components

In computing terms, generalisation’s compacting means fewer, simpler compo-

nents. Compacting works its way through the development life cycle. Compacting

during business object modelling leads to fewer components in the business

model, and this translates into fewer components at all the later stages of sys-

tem building. There are fewer and simpler components to specify during systems

analysis and design and so fewer and simpler components to code and test. This

in turn means fewer and simpler components to maintain and fix. Furthermore,

when people start to learn the system, there are fewer and simpler components

to master. Overall, the effort required to build and maintain the system is

reduced. This translates into a reduction in time and cost. So systems with gen-

eralised components are quicker and cheaper to both build and maintain.

Generalisati

on means no

inherent

complexity

An important consequence of using generalisation as a core tool in system build-

ing is that we can no longer think of a pattern having an inherent complexity. We

are used to thinking that a complex set of business patterns needs a computer

system of equivalent complexity. With generalisation, this rule of thumb no longer

works. The worked examples have shown us how, using a combination of re-engi-

neering and generalisation, we can transform complex patterns into simpler,

more powerful, general patterns. This may initially seem slightly counter-intui-

tive, but it is a natural way of working. It is, for example, the way in which science

BASE PATTERNS

LEVEL

OF

GENERALITY

HIGH

LOW

MA1-6

3 Establish priorities for the construction of fruitful, general, and so re-usable pat-
terns

Starting a Re-Engineering Project

BORO

accumulates knowledge. If we look at its history, we see again and again a complex

theory being superseded by a simpler, more powerful, theory.

Part of what is going on is that as we generalise the patterns, their scope

increases. This is shown schematically in Figure MA1–2. Here, the patterns, #1 and

#2, are generalised into pattern #A, which covers the same scope as #1 and #2.

The number of patterns needed for the full scope has halved from two to one.

However, this is only part of the story. In actual re-engineerings, the generalised

pattern often turns out to be simpler. We saw this in the model for spatial pat-

terns. After re-engineering the first group of entity formats, the final model not

only has fewer objects (at the application level), but is also simpler. The power of

the spatial model was revealed in re-engineering of bank address in MW3— Re-

Engineering Bank Address, where no new business objects were needed.

Figure MA1–2
Generalisation
creates
patterns with
increased scope

The impact

on

estimating

This lack of inherent complexity has a serious impact on the way in which we esti-

mate re-engineering projects. In traditional estimating, a sensible rule of thumb

is that there is a reasonable correlation between the complexity of the require-

ments and the effort (and so cost) of building the system. This assumes that

complexity is unaffected by the system building process. The complex pattern

that goes into the process inevitably leads to complex code. This made estimat-

LEVEL

OF

GENERALITY

HIGH

LOW
#1 SCOPE

#1 #2

#2 SCOPE #1 SCOPE

#1

#A

#2

#2 SCOPE

MA1-7

BORO
3.1 Establishing priorities for the construction of general, and so re-usable patterns

Starting a Re-Engineering Project

ing relatively easy. The resources needed to build a system could be calculated

from the complexity of its requirements.

With generalisation, this is no longer true. The business modelling process can

significantly reduce the complexity of a pattern. Two patterns, one complex and

the other simple, may both be re-engineered into the same simple pattern. This

happened in the worked examples with the simple country pattern (in MW1—Re-

Engineering Country) and the more complex address pattern (in MW3— Re-Engi-

neering Bank Address). We re-engineered both entity formats into the same gen-

eral pattern – which will end up as the same computer code. The complexity of the

requirements no longer correlates well with the resources needed to build the

system.

It might seem that the correlation still applies within the business object model-

ling stage. It is certainly true that a complex pattern can take longer to model

than a simpler one, other things being equal. However, other things are not often

equal. For example, the re-engineering of the simple country pattern took much

longer than the re-engineering of the more complex address pattern, because we

could match the address patterns with the re-engineered country patterns. The

estimation of effort can no longer be based simply on the complexity of a require-

ment.

With experience, one acquires a rough feel for how much compacting to expect

from a group of patterns, and can translate this into a rough estimate. I suspect

it will be some years before there is enough hard data to work out a formula. This

makes accurate estimating difficult. The bright side is that as generalisation

compacts and simplifies, so building a system from a generalised business object

model takes less time and effort than building it from an ungeneralised model.

3.1.2 A generalisation friendly environment

Generalisation brings benefits, but how do we encourage generalisation? People

naturally and unconsciously generalise patterns. However, without a framework

to help them, this instinctive tendency does not normally lead to very general

patterns. The object paradigm remedies this by providing a generalisation

MA1-8

3 Establish priorities for the construction of fruitful, general, and so re-usable pat-
terns

Starting a Re-Engineering Project

BORO

friendly environment, within which a systematic approach can encourage more

general patterns.

Traditional methods of system building do not have access to the compacting

power of generalisation. They do not provide an environment that is conducive to

producing general objects and so have no reason to make generalisation a priority.

A good, and widespread, example of this is common subroutines. Analysts and

programmers naturally recognise their potential. They naturally construct rea-

sonably general subroutines during system building. However, traditional

approaches to modelling processes, such as functional decomposition, hinder

rather than help this natural process. Analysts have to rely on their instinct and

initiative and ignore the approach.

One particular experience of this sticks clearly in my mind. Many years ago one of

the projects I was managing was a large development, using the popular SSADM

method. Towards the end of the analysis stage, a lead analyst told me he was

going to start identifying common subroutines. After some discussion, it

became clear that he was in uncharted (though familiar) territory. This task was

not identified by the method; so, he had not put it in his plan. Yet, he realised it

needed to be done. The method had no systematic techniques to help him, so he

had to rely on his intuition.

When he discovered common subroutines, he found that they could not be

described either in the method’s (data flow diagram) functional decomposition

structure or in the CASE tool he was using. The root of the problem was that nei-

ther of them could model the way two processes use the same common subrou-

tine—what could be called re-composition. They could handle de-composition’s

tree structure, but not re-composition’s lattice structure. Given that common

subroutines depend on re-composition, this meant functional decomposition

actually hindered this type of generalisation.

By contrast, a re-engineering project not only supports generalisation, but also

has a systematic approach that actively encourages it. In this environment, it

makes sense for project managers to make generalisation one of the top priori-

ties. However, old habits die hard. Modellers used to a traditional environment do

MA1-9

BORO
3.1 Establishing priorities for the construction of general, and so re-usable patterns

Starting a Re-Engineering Project

not naturally push generalisation as far as it should go. Project leaders can help

ensure successful generalisation by actively checking how much of it is going on

and persuading modellers to do more when it is needed.

3.1.3 Introducing generalisation during business modelling

A general theme running through many approaches to building computer systems

is that the earlier in the system development life-cycle we introduce a good tech-

nique, the greater the benefits. This not only feels intuitively correct for generali-

sation, it is correct—the best time to generalise is during business modelling.

However, as the tale of the lead analyst identifying common subroutines above

illustrates, system builders often generalise later in the life-cycle.

Economically

sensible to

generalise

business

patterns

early

It is reasonably obvious that the earlier generalisation is introduced into the

development life-cycle, the greater the reduction in overall effort. We can visual-

ise this by thinking in terms of the reduction in the number of system compo-

nents. Figure MA1–3 shows a simplified schema of this.

Figure MA1–3
Introducing
generalisation
at different
life-cycle
stages

Business
Modelling

Systems

Analysis

System

Design

and Build

N
u

m
b

e
r
 o

f
C

o
m

p
o

n
e
n

t
s

Generalisation
Introduced

Cost of
Lost Opportunity

A
oi ra

necS

Scenario B

MA1-10

3 Establish priorities for the construction of fruitful, general, and so re-usable pat-
terns

Starting a Re-Engineering Project

BORO

If generalisation is introduced at the business modelling stage (shown as sce-

nario A in the schema), the benefit of compacting is delivered from the beginning

of the life-cycle. The compacted business components are used in system analy-

sis and on into system design and build.

If, however, generalisation is introduced at the system design and build stage

(shown as scenario B in the schema), then the reduction in components only

occurs then. (For simplicity’s sake, it is assumed that the final reduction in sce-

nario B is equivalent to scenario A.) The reduction in costs associated with com-

pacting only starts appearing then; it does not happen during business modelling

or systems analysis. The cost of this lost opportunity is shown in the schema by

the shading between scenarios A and B. The earlier we compact the components,

the greater the reduction in costs. The later we compact the components, the

greater the cost of the lost opportunity.

The natural

stage to

generalise

business

patterns

As well as the ‘economic’ cost reasons for generalising business patterns during

business modelling, there is also a sound practical reason for generalising them

at this stage—it is the natural stage to do it. We use similarity to generalise

business patterns. Finding this similarity is more naturally done at the business

modelling stage, while we are looking at the objects in the business (illustrated in

Figure MA1–4). In the later stages, when we turn our attention away from the

business and towards the system, the business patterns are not so visible.

Figure MA1–4
Similar business
patterns

ALI R M ?I ?S

ILAM RIS

ACCOUNT

DEAL

SIMILAR

SYSTEM PATTERNS

SIMILAR

BUSINESS PATTERNS

MA1-11

BORO
3.2 Establishing priorities for the construction of fruitful patterns

Starting a Re-Engineering Project

3.2 Establishing priorities for the construction of fruitful patterns

Generalisation and fruitfulness can be seen as two sides of the same coin. A

fruitful pattern can either be sufficiently general to be re-used frequently or suf-

ficiently similar to many other patterns to be generalised into a common pattern.

While we can systematically generalise, fruitfulness is more elusive. It is a kind of

potential for generalisation—an ability to deal with future patterns that have

not been modelled as yet.

3.2.1 Fruitfulness during and beyond a project

This fruitfulness shows itself in two ways—within the scope of the project and

outside it. While a project is in progress, the team can see how a fruitful pattern

leads to high levels of generalisation. Its potential fruitfulness becomes actual

before their eyes as the re-engineering reveals generalisations. But does this

potential only extend as far as the agreed scope? If the scope were widened,

would the pattern’s fruitfulness suddenly dry up?

Our experience is that it does not. Where a pattern has been fruitful within a re-

engineering project, its fruitfulness always seems to extend well beyond the

scope of the project. One way this reveals itself was mentioned in the AS1—An

Overview of the Strategy, which describedthe experience of users finding that their

re-engineered system could handle situations not in the scope, including situa-

tions they did not even envisage when the system was developed.

The naming and spatio-temporal patterns in the previous papers provide another

example. They were fruitful outside their initial scope. For example, the fruitful-

ness of the naming and the nesting geo-political area patterns was clearly shown

in the re-engineering of address. They effectively matched all the address pat-

terns. In my experience, the naming and spatio-temporal patterns are also fruit-

ful outside the scope of the worked examples. I have found their patterns re-

appearing in many re-engineerings. (You might remember it re-appeared in the

bank holiday example in MW4.) This often means that future business require-

ments are either already catered for by the system or can be relatively easily

dealt with.

MA1-12

3 Establish priorities for the construction of fruitful, general, and so re-usable pat-
terns

Starting a Re-Engineering Project

BORO

3.2.2 Building fruitful patterns from complex entity formats

Seeking out fruitful business patterns is a sensible goal for a re-engineering.

However, taking this as a goal, overturns a rule of thumb in traditional system

building. We touched on this point when capturing the conceptual patterns for

country inMW1—Re-Engineering Country. There we noted a tendency to favour

dropping complex patterns when setting the scope of a project,. In a traditional

environment, this makes sense because they take more of an effort to build. In an

object-oriented environment, it does not. It is not that complex patterns no

longer necessarily take more resources to build. It is that complex patterns are

more likely to have fruitful patterns embedded in them. These fruitful patterns

are the Holy Grails of business modellers; the more that can be found the better.

3.2.3 More accurate patterns are more fruitful

There is another way to increase the fruitfulness of the business patterns, and

that is to make them more accurate. In AS3—What and How we Re-engineer, we

looked at how increased physical accuracy was essential to the introduction of

interchangeable parts in manufacturing. We observed that a similar revolution in

accuracy—this time, accurately reflecting the world—was necessary for the

introduction of interchangeable parts in business modelling.

The O—ONTOLOGY Papers, describe how this accuracy has increased as informa-

tion paradigms evolved. They describe , for example, how modern literate western

culture has more accurate notions of sameness and signs than the Huichol Indi-

ans, who see corn and deer as the same (this is discussed in OP2—Substance

Ontology Paradigm. They discuss how western culture is now developing an under-

standing of the logical paradigm’s more accurate distinction between the whole–

part, super–sub-class and class–member patterns. And how it has started to

absorb the object paradigm’s notion of sameness for four-dimensional objects. It

is in the process of providing an accurate explanation of how something now is the

same as it was yesterday; it no longer has to be both the same and different,

much like the Huichol’s corn and deer.

MA1-13

BORO
3.2 Establishing priorities for the construction of fruitful patterns

Starting a Re-Engineering Project

When we build a business ontology object model, it is important that we take

advantage of the object ontology paradigm’s ability to produce more accurate

patterns by using them to construct more general and reusable patterns. Just

as physical accuracy enabled interchangeable reusable parts, so referential accu-

racy encourages the information paradigm’s counterpart—generalisation and re-

use. Increased accuracy reveals the patterns more explicitly, taking the guess-

work out of whether patterns are similar or not. The general patterns con-

structed from more accurate lower level patterns inherit their accuracy and so

are able to operate at higher levels of generality.

So it makes sense for the manager of a re-engineering project to try and deter-

mine whether his modellers are being referentially accurate. And if they are not,

to take remedial action. This should help to ensure the fruitfulness of the pat-

terns.

Object

model’s

lower

granularity

Increased referential accuracy also leads to a lower granularity in the descrip-

tions of patterns—which initially means more objects. If you look at the early ver-

sion of the spatial model in MW1—Re-Engineering Country, you can see that the re-

engineering increased the number of operational items. From this, it might appear

that we have to weigh the benefits of increased accuracy against the cost of han-

dling a larger model. But, it turns out we do not. The increase in accuracy leads to

a corresponding increase in generalisation, which reduces the number of applica-

tion objects significantly.

In the region example in MW2—Re-Engineering Region, the generalised patterns

made almost all the patterns from the re-engineering of the country example

redundant; this was only the second file re-engineered. In the first stage of the

address example in MW3— Re-Engineering Bank Address, no new application

objects were re-engineered. It is these application objects that the system build-

ers construct. Once the re-engineering gets beyond a few entity formats, at the

application level, the compacting effects of generalising more accurate patterns

more than outweighs the expanding effects of their lower granularity.

MA1-14

4 Taking care to manage large projects in a generalisation-friendly way

Starting a Re-Engineering Project

BORO

Learning to

see

accurately

Learning to see with the referential accuracy demanded by the object paradigm is

one of the most challenging aspects of business object modelling. It is important

for the success of the project that the people undertaking the business model-

ling have mastered the challenge and learnt to see in this new way. It also helps if

the people carrying out the systems analysis have at least a broad understand-

ing of business objects.

Managers should ensure that the people working on their project have the right

level of understanding. For the people that need training, The BORO Working Papers

is one way of providing a useful grounding in business ontology object modelling. It

can be usefully supplemented by formal training courses. However, once people

have mastered the foundations, there is no real substitute for experience on a

real project. At this stage, the easiest way to progress is by working with expert

practitioners, learning by example.

This generally means that IT departments starting out on a project have to

either buy in or grow experts. If the decision is to grow, then it is only sensible for

inexperienced people to cut their teeth on a trial project in a non-critical area of

the business. Their learning can be speeded up considerably if the team is beefed

up with an expert mentor.

4 Taking care to manage large projects in a
generalisation-friendly way

To take full advantage of the benefits generalisation brings, we need to manage it.

In large projects, it is particularly easy to stifle the potential for high levels of

generalisation. To create a stable generalisation-friendly environment, we need to

ensure the careful management of the balance between the increased opportu-

nity for generalisation that comes with widening the scope and the increased

risks associated with large projects.

MA1-15

BORO
4.1 Widening the scope increases the opportunities for generalisation

Starting a Re-Engineering Project

4.1 Widening the scope increases the opportunities for generalisation

Each new business pattern added to the scope of a re-engineering project brings

an opportunity for generalisation. We saw an example of this in MW3— Re-Engi-

neering Bank Address’s re-engineering of region. Extending the scope of the re-

engineering from country to region enabled us to generalise both patterns to geo-

political area. Though it may seem counter-intuitive, widening the scope led to a

smaller, more general and powerful model rather than a bigger one.

The more conceptually powerful the model, the more pronounced this effect. The

model does not have to grow in size or complexity as we add patterns, we can gen-

eralise and make it smaller and simpler instead. When we introduce new patterns

to a generalised model, the likelihood of us being able to generalise them is higher.

This is because the model’s general patterns are more likely to match with the

new patterns.

This also means that the more general the model, the smaller the cost of re-engi-

neering each new pattern is likely to be. We saw an example of this in address’s re-

engineering in MW3— Re-Engineering Bank Address. The spatial model was suffi-

ciently general that the new business patterns introduced in the address entity

formats all matched with existing patterns. There were no new patterns; so, the

cost of building new computer code for the address business patterns would be

nil!

This is the complete opposite of what happens in traditional system building,

where generalisation is not properly supported. There we have to harmonise each

additional pattern with the existing patterns, adding to the complexity of the

system. As the number of patterns in the system increases, the task of harmo-

nisation gets more onerous. The traditional rule of thumb is that the more pat-

terns there are, the greater the cost of handling each new pattern. The difference

between traditional system building and system building using business object

modelling is shown graphically in Figure MA1–5

MA1-16

4 Taking care to manage large projects in a generalisation-friendly way

Starting a Re-Engineering Project

BORO

Figure MA1–5
Correlation
between scope
and complexity

4.2 Balancing the economies of scope against the problems of size

This would seem to imply, at least in theory, that it is better to have as wide a

scope as possible in a re-engineering project, because this will keep the costs of

building the system down. To an extent this is correct, because the wider the

scope the greater the opportunity for generalisation. But as the scope

increases, so does the size of the project. And a large project brings increased

risks.

The scope of re-engineering projects is defined in terms of the entity formats of

an existing system. If the system is small, it has few entity formats and so can

be re-engineered in one go. Doing it piecemeal would just take longer and demand

more effort. When a large system is re-engineered the situation changes. The

scope includes many more entity formats. Re-engineering them all in a single

project usually takes either many years, a large team or both.

Narrower

Traditional
Entity
Modelling

Object
Modelling

Wider

Lower

Higher
C

O
M

P
L
E
X

IT
Y

 /
 S

IZ
E

SCOPE / FUNCTIONALITY

MA1-17

BORO
4.3 Chunking the existing system

Starting a Re-Engineering Project

However, the longer a project lasts and the larger the number of people involved,

the more difficult it is to manage. If it gets very large it is much more likely to end

up out of control. Furthermore, you cannot guarantee that, after all the man

years of effort, the system will actually work. So, when re-engineering large sys-

tems, we need to balance the benefits of a wide scope against the inherent risks

in a large project.

4.3 Chunking the existing system

In practice, people tend to redevelop large systems bit by bit. It is like the child’s

riddle—‘How do you eat an elephant?’ The answer is ‘in bite-sized chunks’. By

dividing the system into manageable (digestible) chunks, we can keep things

under control. As we implement chunks at regular intervals, we are giving tangible

evidence of progress. Management can see the results of their investment rea-

sonably soon after they make it—instead of waiting until the end of the overall

project.

One problem has to be overcome in this approach. A system, by its very nature, is

an interconnected coherent whole. When we redevelop a chunk, we have to fit it in

with the existing system, if it and the system are to work together. However, if

we design the new chunk to work with the old system, it will probably inherit some

of the structure of the old system.

The standard tactic in traditional system re-development for dealing with this

problem is to design the new chunk to work unencumbered by the existing sys-

tem. Then, to get the two to work together, a temporary interface is built that

handles the connections between the old and the new. As each new chunk is rede-

veloped, it permanently links up with the other new chunks and connects to the

old system through a new temporary interface. When all the chunks are redevel-

oped there is no longer a need for a temporary interface. This is shown schemati-

cally in Figure MA1–6.

MA1-18

4 Taking care to manage large projects in a generalisation-friendly way

Starting a Re-Engineering Project

BORO

Figure MA1–6
Eating the
problem in bite-
size chunks

4.4 The object re-engineering approach to chunking

Working on the re-engineering large systems, we have developed a varaition of the

standard practice of chunking. We divided the overall project into a number of

subprojects, each dealing with a chunk of the existing system. But we did not re-

engineer each chunk in isolation. If we had, this would have restricted the scope of

each re-engineering to its chunk, losing the potential for generalising patterns

across chunks.

Instead, we adopted a different approach. As we re-engineered the chunks in turn,

we included the scope of all the previous chunks. This meant that by the time we

came to the last chunk, the scope of the re-engineering was the whole existing

system (illustrated in Figure MA1–7). In this way, we took full advantage of the

power of generalisation across a wide scope, without the risks associated with a

large project.

Figure MA1–7
Re-engineering
combined
chunks

TEMPORARY INTERFACE

CHUNK #1

EXISTING
SYSTEM

Sub-Project #1 Sub-Project #2 Sub-Project #3

CHUNK #2

TEMPORARY INTERFACE

CHUNK #1

EXISTING
SYSTEM

CHUNK #3

CHUNK #2

CHUNK #1

CHUNKS
#1, #2
& #3

CHUNKS
#1 & #2

TEMPORARY INTERFACE

TEMPORARY INTERFACE

CHUNK #1

EXISTING
SYSTEM EXISTING

SYSTEM

Sub-Project #1 Sub-Project #2 Sub-Project #3

MA1-19

BORO
4.4 The object re-engineering approach to chunking

Starting a Re-Engineering Project

In a traditional environment where there is little generalisation, this approach

would make little sense. If, when the first chunk was re-developed, its require-

ments were included in the scope of the second chunk, then this would effectively

double the size of the chunk. Adding in more chunks as they were re-developed to

subsequent chunks would treble, quadruple, and so on, their size. This would lead

to larger and larger projects, defeating the whole purpose of chunking.

However, in an object-oriented environment, the approach is sound. When we re-

engineer a chunk, we generalise and compact its business patterns. So, when we

widen the scope to include the re-engineered patterns from the earlier chunks,

this does not lead to a substantial increase in the actual number of patterns. The

earlier chunks’ patterns are general; so, it leads to a substantial increase in the

opportunities for generalisation. As a result, adding in earlier chunks does not

substantially increase the size of individual chunks. In some cases it can actually

substantially reduce the size of the re-engineered chunk (illustrated schemati-

cally in Figure MA1–8). By the time we get to the last chunk, the scope has widened

to the whole system without any of the sub-projects being any larger than they

would have been in a traditional system building project.

Figure MA1–8
Compacting
combined
chunks

Sub-Project
#1

Sub-Project
#2

Sub-Project
#3

N
u

m
b

e
r
 o

f
C

o
m

p
o

n
e
n

t
s

C
H

U
N

K
 #

1

C
H

U
N

K
 #

2
#

1

#
1

&
2

#
1

&
2

#
1

,2
&

3

#
1

C
H

U
N

K
 #

3

MA1-20

4 Taking care to manage large projects in a generalisation-friendly way

Starting a Re-Engineering Project

BORO

4.5 The benefits of chunking

One of the big benefits of this kind of chunking is that there are multiple opportu-

nities to get a pattern right. After each combined chunk is implemented, the

modellers get a chance to see how their patterns are performing in a live system.

This suggests improvements that they can incorporate into the re-engineering of

the next combined chunk. Each redeveloped chunk, except the final one, can be

treated as a prototype for the next chunk of redevelopment.

This encourages the development of fruitful patterns. People are unlikely to find

the most fruitful general patterns at the first attempt. To some extent, they

have to go through a process of trial and error. And chunking offers a controlled

environment for trying out the patterns and finding any errors. The opportunity

to have a second, third and even fourth chance to construct the right pattern,

and to see each attempt in live operation, significantly increases the chance of

constructing a fruitful general pattern.

This goes against the grain of the mind-set associated with traditional

approaches. Because these normally only allow one attempt at constructing the

right pattern, great store is set on finding a strong rigid fixed pattern that lasts

the whole of the redevelopment and beyond. The object approach turns this value

judgement on its head; in a re-engineering, fixed patterns are bad. If a pattern

remains fixed, then this is probably because it is not being generalised. Under the

object approach, the goal becomes generalising patterns rather than finding fixed

ones.

4.6 Choosing chunks

One awkward management decision is deciding how to chunk up the existing sys-

tem. There are many factors to weigh up, and these vary from system to system.

One important factor is the type of information passing between the candidate

chunks. If we choose chunks that have only a few types of information passing

between them and the rest of the system, then we keep the ‘complexity’ of the

temporary interface low.

MA1-21

BORO
4.7 Scheduling the sub-projects with the overall project

Starting a Re-Engineering Project

Another factor is encouraging generalisation by putting similar patterns

together in the same chunk. For example, most modellers familiar with the finan-

cial sector would be able to guess that the securities and currencies patterns

are similar. If we were to allocate these patterns to the same chunk, then this

would encourage their generalisation to the financial asset pattern (illustrated in

MA2’s Figure MA2–6).

Most systems naturally fall into a number of modules; often, these are a reason-

able basis for chunking. This still leaves open decisions on whether to have each

module as a small chunk or group modules together into bigger chunks. However,

someone with a working knowledge of the system should be able to have a good

stab at chunking, once they understand the principles of the re-engineering

approach.

4.7 Scheduling the sub-projects with the overall project

One management task is planning how the schedule for the chunked sub-projects

will fit into the overall project. The simplest schedule has each chunk completely

redeveloped and implemented before the next (combined) chunk is started

(shown in Figure MA1–9).

Figure MA1–9
A simple
sequential
pattern for the
overall
structure

If there are tight time constraints on the overall project, then this is probably not

the best schedule. In this situation, it is sensible to overlap the chunked sub-

projects. One solution is to overlap them within a life-cycle stage (shown in Figure

TIME

Chunk #1

Chunk #1&2

Chunk #1,2&3

MA1-22

4 Taking care to manage large projects in a generalisation-friendly way

Starting a Re-Engineering Project

BORO

MA1–10). When the business modelling stage is complete for the first chunk, the

systems analysis stage is started. At the same time, business modelling starts

on the second chunk, including the compacted business model from the first

chunk.

The perceived benefit of overlapping the sub-projects is that the overall project

takes less time than if the sub-projects were to follow one after another in

sequence. However, when the sub-projects are overlapped, the experience from

implementing one sub-project no longer feeds back into the business modelling of

the next. Project managers need to weigh up the relative benefits of sequencing

or overlapping the sub-projects for their particular overall project.

Figure MA1–10
An overlapping
pattern for the
overall
structure

4.8 How to order the individual chunk sub-projects

It is important to consider the order of the individual chunk sub-projects as well

as their overall structure. To some extent, this is dictated by the demands of the

business. If a particular chunk contains new functionality that is critical to the

business, naturally it is given a high priority.

However, the dependencies between business patterns also dictate, to some

extent, the order of re-engineering for chunks and entity formats within chunks.

For instance, transaction entity formats should, in general, be re-engineered

after ‘static data’ entity formats. This is because the business patterns in

transactions tend to depend on the patterns in ‘static data’.

TIME

Chunk
#1

Chunk
#1&2

Business
Modelling

Sequential
Chunks
Project
Timescale

Overlapping
Chunks
Project

Timescale

System
Analysis

System
Design

System
Coding

Chunk
#1,2
&3

Time
Saving

MA1-23

BORO
4.9 Ephemeral documentation

Starting a Re-Engineering Project

We shall see an example of this in the re-engineering of an accounting transaction

in MA2—Using Business Objects to Re-engineer the Business . Its patterns depend

on the ‘static data’ person and asset patterns, but not vice versa. In a ‘real’

re-engineering, it would make sense to re-engineer this static data before the

accounting transaction.

When planning the order of the individual sub-projects (and the order of the

entity formats within the sub-project), it makes sense to take account of the

dependencies between the business patterns and to plan to re-engineer the

dependent patterns after the patterns they depend on.

These dependencies between patterns are not just a feature of object systems.

They are reasonably well-known in larger traditional systems. I have come across

a number of package systems that explains the dependencies between data in

their start-up documentation, saying, for instance, that company data depends

on the correct country data being available. These dependencies are then used to

suggest a schedule for setting up data in the system.

4.9 Ephemeral documentation

Because this approach treats all chunks, except the final one, as prototypes for

the next chunk, this raises a tricky issue for system documentation. Unlike tradi-

tional approaches, the re-engineering approach expects the early (prototype)

chunks to change significantly as their patterns are generalised. This means that

the documentation for these chunks is ephemeral, going out-of-date when the

next chunk is re-engineered. So, producing full documentation for each chunk

seems like a costly waste of time. But this has to be set against the problems of

running the implemented chunks in a live system without all the documentation.

And the problem applies to all the types of documentation; both business model

and system.

It is sensible when planning the project to specify the types of ephemeral docu-

mentation that will be produced during the re-engineering of the prototype

chunks, balancing the cost of producing it against the benefit it brings. Also, the

MA1-24

5 Produce a validated understanding of the business

Starting a Re-Engineering Project

BORO

plan for the final chunk needs to contain the task of producing the full set of doc-

umentation. Then, everyone can be clear about what documentation has to be

produced when.

When assessing whether particular types of ephemeral documentation should be

produced, we need to consider its uses, both in live operation and the system

building process. It makes sense to produce documentation that is key to either

of these. For example, it could be argued that producing tidied up versions of the

object schemas is not particularly important to the live operation of the system.

However, I have found that trying to produce presentable versions often brings to

the surface useful insights, improving the quality of the business model. For this

reason, I usually suggest that they are produced.

5 Produce a validated understanding of the
business

Industry studies seem to show that a large number of the errors found when sys-

tems are implemented are because of misunderstandings about what the busi-

ness required rather than errors in coding. These types of errors are, for the

most part, avoidable in a re-engineering project. The re-engineering should pro-

duce a business model that reflects the business patterns accurately. And, in

theory at least, these should not need to be changed during the system building

process. Nor should they lead to errors in the implemented system.

However, I have found that object schemas on their own do not provide a complete

enough check on the accuracy of the patterns in the business model. They are a

potent tool for making visible the patterns we use to understand the world. They

take advantage of the human brain’s ability to spot any out-of-place shapes in

the patterns. But, despite all this, they do not provide as complete a check on

the accuracy of the patterns as required. I find that I need to build a validation

system to give myself a reasonable confidence that the reflections are accurate.

MA1-25

BORO
5.1 Building a validation system

Starting a Re-Engineering Project

5.1 Building a validation system

The validation system is the business model translated into a database and pop-

ulated with a representative sample of operational objects. I use the existing

system as my primary source for the operational objects, migrating its data

onto the validation system. For small files, I migrate all the operational data; but,

with the larger files, I usually only migrate a representative sample. Where possi-

ble, I migrate the data automatically. I also load up any new operational ‘data’

found during the analysis of conceptual patterns (an example would be England

and the other nested countries in MW1—Re-Engineering Country).

The validation system does not require sophisticated technology and should not

involve much effort. It can be built within a CASE tool (if one is being used) or con-

structed on a simple computer database. (I have found that non-object-oriented

PC databases are a cheap and effective solution.)

I normally construct the validation system as I am doing the modelling, translat-

ing and migrating the data from the existing system as I re-engineer its entity

formats. This usually brings up issues, which I can resolve there and then. When

sufficient data has been migrated, I produce reports and enquiries from the vali-

dation system. This enables me to touch and feel each bit of the model as it

grows; there is no real substitute for this. I can often see immediately whether

something works and change it if it does not. In addition, most users have found

these reports and enquiries a more accessible way of checking the model than

object schemas.

The key benefit from constructing the validation system is that inaccurate

reflections of business patterns are found and fixed before any time has been

spent building them into the system. This helps avoid the frustrating experience

common in traditional system building, that is, finding resources have been

wasted building inaccurate business patterns. Using a validation system signifi-

cantly reduces the level of these errors, minimising the wasted resources.

MA1-26

6 Object model the migration of business patterns

Starting a Re-Engineering Project

BORO

6 Object model the migration of business patterns

A re-engineering project, by its nature, involves the migration of business pat-

terns from the existing system to the new object system. These will be applica-

tion level patterns, such as countries, and operational level patterns, such as

United States. If the business paradigm embedded in the final system does not

accurately reflect the business model (and so the real world), then much of the

model’s power can be lost. One way of ensuring that this does not happen is hav-

ing a sufficiently formal and accurate specification of how the business patterns

are migrated. I do this by constructing an object model of the migration.

6.1 Tracing the migration of application level business patterns

The business model produced by the re-engineering process contains an accurate

reflection of the business. It should be embedded in the final system. However, I

have found that a common problem with the embedding is that some system ana-

lysts and designers treat the business model as a proposal rather than a for-

mally defined input into the process. They assume that they can exercise their

judgement to pick and choose what to embed and amend as they see fit.

This is, in my experience, a general problem for all business models—not just

object models. But with an object model, it is a sure-fire way of losing the bene-

fits of business object modelling. The object model is a tightly connected system.

Fiddling with bits of it, particularly by someone who does not understand the

business patterns, is almost certain to have a deleterious effect on the whole

structure.

This is not to say that systems analysts and designers should be discouraged

from finding inaccuracies in the business model—quite the opposite. But if they

do find what they consider to be an inaccuracy, business modellers should check

it. If it is a real inaccuracy, the more accurate pattern should be applied to the

business model and it should work its way through normal channels to the sys-

tems analyst and not unilaterally applied to the system specification.

MA1-27

BORO
6.2 Modelling the migration of application level business patterns

Starting a Re-Engineering Project

I have found that the simplest way to ensure that the business model’s accurate

patterns are embedded unchanged in the final system is to provide a system for

confirming that this has been done. I model the business patterns’ translation

into the system model and onwards into the implemented system. This transla-

tion model provides traceability. We can trace the migration of the patterns from

the business object model to the implemented system. Any unauthorised

changes are brought to light. The formal nature of the translation model also

means that the checking can be automated.

6.2 Modelling the migration of application level business patterns

The simplest way to model the migration of the application level business pat-

terns is to extend the business object model to include the translation of the

patterns into the implemented system. The first step is to extend the meta-

model. Then as a second step, these two extensions are populated.

We need two extensions to the meta-model. The first is a system object model

for the paradigm used by the implemented system. The second is a general trans-

lation tuple that has as members the tuples connecting the objects in the busi-

ness model and the objects in the implemented system model. The result is

illustrated in Figure MA1–11.

MA1-28

6 Object model the migration of business patterns

Starting a Re-Engineering Project

BORO

Figure MA1–11
Extended
application level
migration model

It is worth bearing in mind that the business object model is technology inde-

pendent. This means, among other things, that it can be implemented on any

technology. It can be implemented into an object database, a relational database

or even simple flat files. It can be implemented in an object-oriented programming

language, such as C++ or Smalltalk, or it can be implemented in a traditional lan-

guage, such as COBOL. However, each of these implementations requires its own

system meta-model in the migration model.

6.3 Modelling the migration of operational level business patterns

In a re-engineering project, we need to migrate the operational level business pat-

terns as well as the application level patterns. I normally do this twice. I do this

once during business modelling, when I populate the validation system with opera-

tional objects (described earlier); and then a second time at implementation,

when I populate the implemented system with relevant (operational) static data

(items such as currency and clients). These operational objects come, for the

most part, from the existing system.

We normally re-engineer a few representative operational objects from the exist-

ing system to provide us with the basic patterns from which we generalise the

A
P

P
L
IC

A
T

IO
N

L
E
V

E
L

F
R

A
M

E
W

O
R

K
L
E
V

E
L

COUNTRIES

COUNTRY

TRANSLATION TUPLES

BUSINESS
OBJECTS

BUSINESS
OBJECT
MODEL

TRANSLATION
TUPLES

SYSTEM
OBJECT
MODEL

COUNTRIES

COUNTRY

SYSTEM
OBJECTS

MA1-29

BORO
6.3 Modelling the migration of operational level business patterns

Starting a Re-Engineering Project

application level patterns. For example, in MW1—Re-Engineering Country we re-

engineered the individual objects, the United States and the United Kingdom, and

generalised them into the countries class. However, the validation and imple-

mented systems need many more operational objects than the re-engineering.

I have found that it helps me to manage the migration of this large number of

operational objects, if I model its general patterns. I do not describe each individ-

ual operational object’s migration pattern; instead, I use a representative sample

to construct general ‘application level’ migration patterns. These then consti-

tute a migration specification I can use for all the operational objects.

My first step is to extend the business object meta-model. I extended it for the

target system (either the validation system or the implemented system), when I

set up the ‘system’ for checking whether business patterns were properly

embedded in the implemented system. (This was described in the previous sec-

tion and illustrated in Figure MA1–11.)

So I now extend the meta-model to include the existing system, the prime source

for operational objects. I also include a general translation tuple linking the exist-

ing system’s entities to the business objects. Figure MA1–12 provides an idea of

what the extended meta-model would look like.

The second step is to model the migration of some representative operational

objects and to discover the basic patterns for application level migration. These

are migration ‘rules’. I use them to specify how the operational entities from the

existing system can be correctly embedded in the target system. I sometimes

use them as a model for an automated migration process. Either way, they

greatly simplify the migration of data from the existing system to the new sys-

tem.

MA1-30

7 Summary

Starting a Re-Engineering Project

BORO

Figure MA1–12
Extended
operational level
migration model

7 Summary

This paper focused on how you can use business object ontology to help you

re-engineer your legacy entity oriented systems. It stresses the importance of

embedding them properly in the final system, if you want to harvest these bene-

fits. The next MA—The BORO Re-Engineering Methodology: Applications paper

(MA2—Using Business Objects to Re-engineer the Business) focuses on a different

topic, using business ontology objects to re-engineer the business.

COUNTRIES

COUNTRY

COUNTRIES

COUNTRY

SYSTEM
OBJECTS

BUSINESS
OBJECTS

A
P

P
L
IC

A
T

IO
N

L
E
V

E
L

O
P

E
R

A
T

IO
-

N
A

L
 L

E
V

E
L

F
R

A
M

E
W

O
R

K
L
E
V

E
L

EXISTING
SYSTEM'S

ENTITY FORMATS

BUSINESS
OBJECT
MODEL

BUSINESS OBJECT TO
SYSTEM OBJECT

GENERAL TRANSLATION TUPLES

SYSTEM
OBJECT
MODEL

BUSINESS OBJECT TO
SYSTEM OBJECT

GENERAL TRANSLATION TUPLES

ENTITY FORMAT
TRANSLATION TUPLES

SYSTEM OBJECT
TRANSLATION TUPLES

UNITED
STATES

INDIVIDUAL
UNITED
STATES
ENTITY

COUNTRY
ENTITY
TYPE

UNITED
STATES

ENTITY
FORMAT
ELEMENTS

ENTITY FORMAT
TRANSLATION
TUPLES CLASSES

SYSTEM OBJECT
TRANSLATION
TUPLES CLASSES

MA1-31

BORO
BORO Working Papers - Bibliography

The BORO Working Papers

Volume A

A—The BORO Approach

Book AS

AS—The BORO Approach: Strategy

AS1—An Overview of the Strategy

AS2—Using Objects to Reflect the Business Accurately

AS3—What and How we Re-engineer

AS4—Focusing on the Things in the Business

Volume - O

O—ONTOLOGY Papers

Book - OP

OP—Ontology: Paradigms

OP1—Entity Ontology Paradigm

OP2—Substance Ontology Paradigm

OP3—Logical Ontology Paradigm

OP4—Business Object Ontology Paradigm

Volume - B

B—Business Ontology

Book - BO

BO—Business Ontology: Overview

BO1—Business Ontology - Some Core Concepts

Book - BG

BG—Business Ontology: Graphical Notation

Constructing Signs for Business Objects

MA1-32

BORO Working Papers - Bibliography

BORO

Graphical Notation I

BG1— Constructing Signs for Business Objects

Graphical Notation II

BG2— Constructing Signs for Business Objects’ Patterns

Volume - M

M—The BORO Re-Engineering Methodology

Book - MO

MO—The BORO Re-Engineering Methodology: Overview

MO1—The BORO Approach to Re-Engineering Ontologies

Book - MW

MW—The BORO Methodology: Worked Examples

Worked Example 1

MW1—Re-Engineering Country

Worked Example 2

MW2—Re-Engineering Region

Worked Example 3

MW3— Re-Engineering Bank Address

Worked Example 4

MW4—Re-Engineering Time

Book - MA

MA—The BORO Re-Engineering Methodology: Applications

MA1—Starting a Re-Engineering Project

MA2—Using Business Objects to Re-engineer the Business

Book - MC

MC—The BORO Re-Engineering Methodology: Case Histories

Case History 1

MC1—What is Pump Facility PF101?

BORO

A–F

MA1-33

A

accuracy (and inaccuracy)
checking - MA1-24

fruitful -MA1-12

information paradigm evolution - - - - - -MA1-12

interchangeable parts - - - - - - - - - - - - - - - -MA1-12

physical vs. referential (conceptual) MA1-13–

MA1-14

reflecting the business - - - - - - - - - - - - - - MA1-26

application level (of model) MA1-6, MA1-13, MA1-26–

MA1-28

B

business object meta–model - - - - - - - - - - - MA1-29

business object modelling–training - - - - MA1-14

business object model–technology
independent - - - - - - - - MA1-28

business patterns
natural stage to generalise - - - - - - - - - MA1-10

salvaging investment in - - - - - - - - - - - - - - - MA1-2

C

chunking -MA1-17–MA1-21

compacting
benefit of introducing early - - - - - - - - - - MA1-10

combined chunks - MA1-19

fewer, simpler components - - - - - - - - - - - MA1-5

complexity
conceptual patterns - - - - - - - - - - - - - - - - - MA1-5

fruitful patterns - MA1-12

not inherent - MA1-5

re-engineering - - - - - - - - - - - - - - - - - -MA1-5, MA1-12

D

documentation – ephemeral - - - - - - - - - - - - MA1-23

E

economies of scope -MA1-16

explicit
business model -MA1-13

F

fruitful patterns
beyond a project - MA1-11

chunking - MA1-20

from complex entity formats - - - - - - - - MA1-12

more accurate - MA1-12

prioritise construction of MA1-1, MA1-4, MA1-11

functional decomposition - - - - - - - - - - - - - - - - MA1-8

INDEX M A 1
M E T H O D O L O G Y :

A P P L I C A T I O N - 1

STARTING A RE-ENGINEERING
PROJECT

MA1-34

BORO

G–W INDEX

G

generalisation
friendly environment - - - - - - - - - - - - - MA1-1, MA1-7

introduce during business modelling - MA1-9

less costly components - - - - - - - - - - - - - - MA1-5

potential for - MA1-11

produces compacting - - - - - - - - - - - - - - - - - MA1-4

H

Huichol Indians -MA1-12

I

increases in scope
opportunities for generalisation - - - - MA1-15

information paradigm
evolution -MA1-12

interchangeable parts -MA1-12

L

logical paradigm
new way of seeing -MA1-12

M

managing large re-engineering projects - - - - -

MA1-14–MA1-24

migration of business patterns MA1-26–MA1-29

N

new way of seeing - MA1-3

R

redundant patterns -MA1-13

re-use
patterns - - - - - - - - - - - - - - - - - - MA1-1, MA1-4, MA1-13

S

structure – lattice and tree
functional decomposition - - - - - - - - - - - - MA1-8

super–sub-class
new way of seeing - MA1-12

V

validation system - - - - - - - - - - - - - - - - - MA1-25, MA1-28

W

webby pattern - MA1-3

well–defined scope - - - - - - - - - - - - - - - - - - MA1-3–MA1-4

	CONTENTS
	1� Introduction
	2� Take a re-engineering approach
	2.1 Salvaging investment in business patterns
	2.2 A well-defined scope

	3� Establish priorities for the construction of fruitful, general, and so re-usable patterns
	3.1 Establishing priorities for the construction of general, and so re- usable patterns
	3.1.1 Generalisation produces a compact system
	3.1.2 A generalisation friendly environment
	3.1.3 Introducing generalisation during business modelling

	3.2 Establishing priorities for the construction of fruitful patterns
	3.2.1 Fruitfulness during and beyond a project
	3.2.2 Building fruitful patterns from complex entity formats
	3.2.3 More accurate patterns are more fruitful

	4� Taking care to manage large projects in a generalisation-friendly way
	4.1 Widening the scope increases the opportunities for generalisation
	4.2 Balancing the economies of scope against the problems of size
	4.3 Chunking the existing system
	4.4 The object re-engineering approach to chunking
	4.5 The benefits of chunking
	4.6 Choosing chunks
	4.7 Scheduling the sub-projects with the overall project
	4.8 How to order the individual chunk sub-projects
	4.9 Ephemeral documentation

	5� Produce a validated understanding of the business
	5.1 Building a validation system

	6� Object model the migration of business patterns
	6.1 Tracing the migration of application level business patterns
	6.2 Modelling the migration of application level business patterns
	6.3 Modelling the migration of operational level business patterns

	7� Summary
	BORO Working Papers - Bibliography
	INDEX

